MID-ATLANTIC ELECTRIC VEHICLE CHARGING INFRASTRUCTURE

DC Fast Charging

Gil Tal, Ph.D., Director, PH&EV Research Center, University of California, Davis
Who is using DC Fast Chargers? once or more in the last 30 days (CA 2018)

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Yes (%)</th>
<th>No (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nissan Leaf</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Tesla Model X</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Tesla Model S</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Volkswagen e-Golf</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Chevrolet Bolt EV</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>BMW i3</td>
<td>5%</td>
<td></td>
</tr>
</tbody>
</table>
Days between charging events

<table>
<thead>
<tr>
<th></th>
<th>Leaf</th>
<th>Model S</th>
<th>RAV4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Days/Session</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Average Days/Session DCFC</td>
<td>14.0</td>
<td>11.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Average Days/Session L1&L2</td>
<td>1.5</td>
<td>1.6</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Distance from home of DCFC charging

Leaf home distance from DCFC charging location (As the crow flies in KM)

Model S home distance from DCFC charging location (As the crow flies in KM)
Average kWh/Session and Charging Duration (minutes)

- Bolts have longer DCFC sessions compared to Tesla
- On board power electronics limits on rated kW between BEVs
Most usage happens near home

Distance Home to Charger (mi)

- Nissan Leaf 24kWh Free-Prepaid Charging
- 10-20 cents per min

Distance Home to Charger (mi)

- Nissan Leaf 24kWh Paid Charging
- 10-20 cents per min

Distance Home to Charger (mi)

- Chevrolet Bolt
- Paid Charging
- 10-20 cents per min
How often do drivers use DC fast?

- About 60% not using DCFC at all
- Many users did less than 2 events after signing for a provider
- 10-15% are “regular users” N>2

Days between charging events for N>2
DCFC demand for 200+ miles range BEVs with free charging

- 30% used the charger in the last 30 days
- With an average of once every 11 days (10% per day)
- Half of the charging event happened within 50 miles from home with enough range to get home
- 70% of those trips after charging ends at home
- Expected charging rate for paid charging 1%-3% per day.
- Expected charging for long trip (corridor charging) 0.5%
Charger Choices in San Diego

Legend

Wanted Chargers
Choice 1
- DC Fast
- Level 2
Charger Choices in San Diego

Legend

Wanted Chagers
Choice 1-2

- DC Fast
- Level 2
Charger Choices in San Diego

Legend
Wanted Chagers Choice 1-3
- DC Fast
- Level 2
Charger Choices in San Diego

Legend

Wanted Chagers
Choice 1-5

- DC Fast
- Level 2
Given Only 5 Choices, Priority is Home Area
Leaf DC fast charging Desired vs needed vs actual

Cumulative Distance Distribution of Desired, Modeled and Used Chargers by LEAF Drivers

- Desired DC Fast: Leaf Survey
- Modeled BEV 100 Choices Scaled to Frequency
- Used Chargers for Leafs
US 2 - Seattle Wenatchee Corridor
Cold day and heavy car

Average miles left

Range Scenario (Travel East)
Range Scenario (Travel East)
Elevation profile
DC Fast Charger location

Charger location
(from Seattle)	Travel East	Travel West
chrager 1: 40 miles | X | X
chrager 2: 60 miles | X |
chrager 3: 90 miles | X | X
chrager 4: 120 miles | X | X
Sacramento to Bakersfield
I-5 or Hwy 99?
Charging for on a long corridor is not practical ...based on Value of time
D = 85 mile tour
Charge window on D is mile 37-64
A = 4 customers
B = 3 customers
C = 6 customers
DCFC charging demand for private use will result from none routine user

- Substitute for home charging
- Substitute for work charging
- Unexpected additional travel need
- Trips longer than vehicle range
Demand Scenario 2. 2025 with PG&E inputs.
1.5 Million vehicles With Apartment Sensitivity.
Work Charging Based on Market Scenario

Market Forecast Using Census Data

EV Planning Toolkit

- Market Tool
- Workplace Charging Tool
- DCFC Tool

ArcGIS Interface Allows You To Make Your Own Scenarios

Fast Charging - Estimates Take into Account Existing Chargers

Source: UC Davis, 2017
Contact information:
Gil Tal (gtal@ucdavis.edu)

Thank You!