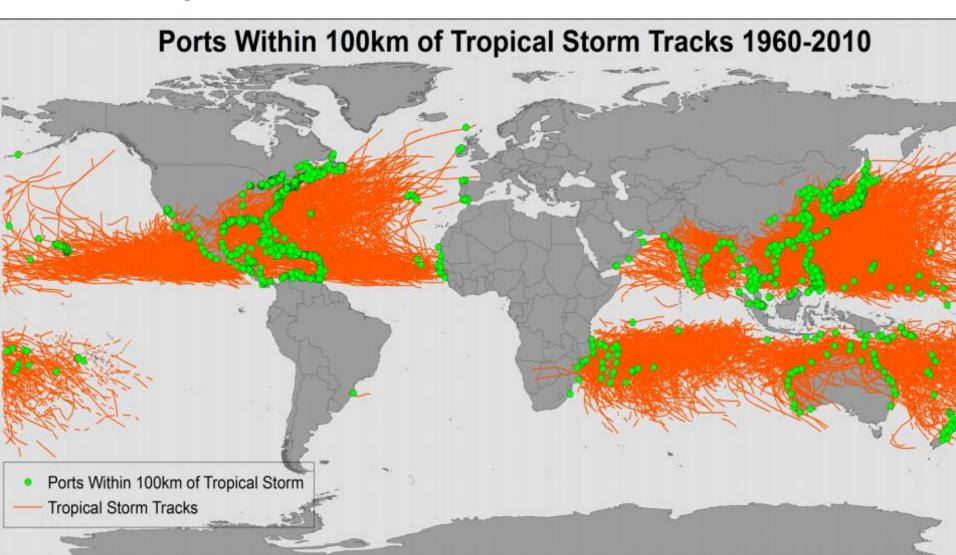


Climate Resilience at Ports

October 24, 2017

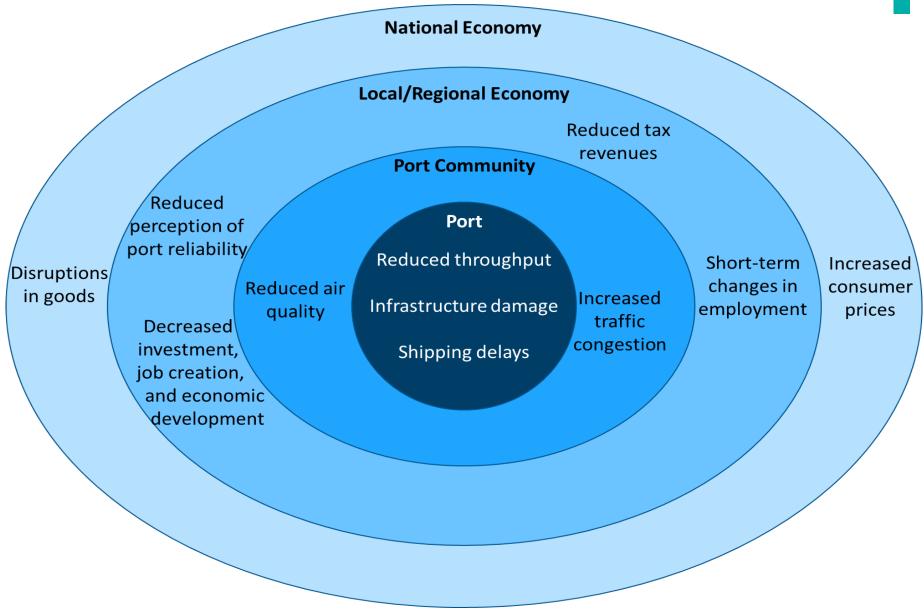


Anne Choate Senior Vice President, ICF

Ports: exposed and vulnerable

Becker, A., et al. (2013), "A note on climate change adaptation for seaports: A challenge for global ports, a challenge for global society." Journal of Climatic Change.

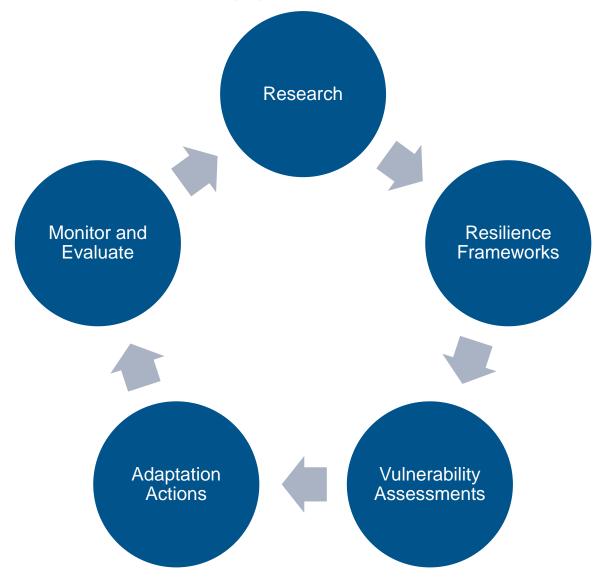
Beyond coastal flooding risks...


Higher temperatures →

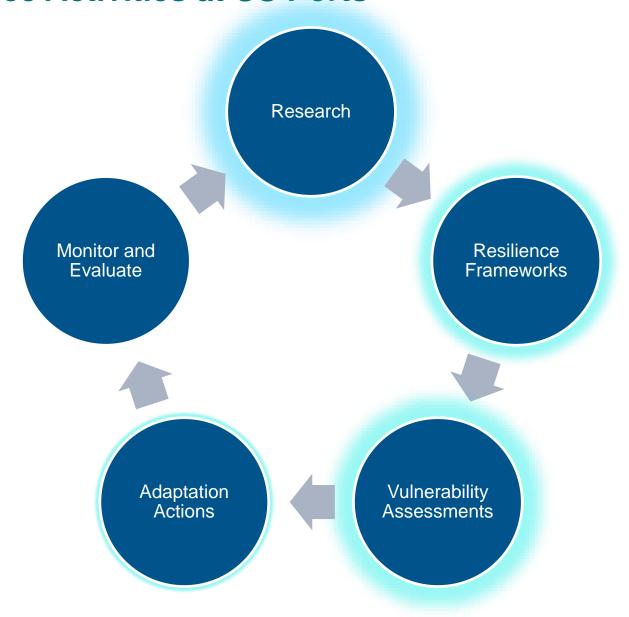
- Higher energy costs
- Faster deterioration of pavements
- Increased risk of spoilage for some goods

■ Changing precipitation and streamflow →

Changing risk of riverine flooding or low water risks for inland ports


Source: ICF - developed for forthcoming U.S. EPA Inland Port Community Resilience Roadmap

The State of Play



Resilience Activities in US Ports

Resilience Activities at US Ports

Examples

Resilience Frameworks

- FHWA Climate
 Change and Extreme
 Weather Vulnerability
 Assessment
 Framework
- NCFRP Report 30 –
 Making U.S. Ports

 Resilient as Part of
 Extended Intermodal

 Supply Chains
- EPA Inland Port Community Resilience Roadmap

Vulnerability Assessments

- Massport
- U.S. DOT Gulf Coast Study (Phase 1 and 2)
- Port of San Diego
- Port of Rotterdam (Netherlands)
- Port of Manzanillo (Mexico)
- Muelles el Bosque (Colombia)
- Port Avatiu (Cook Islands)

Adaptation Actions

- Massport Climate
 Resiliency Program
- Port Authority of New York and New Jersey Climate Resilience Design Guidelines

Massport Climate Resilience Program

Source: Massport - http://www.massport.com/media/1657/resiliency-and-climate-change_infographic.pdf

Example Massport Resiliency Projects include...

"Soft" strategies...

- Increase coordination across departments
- Update emergency response planning
- "Floodproofing Design Guide"
- Set resiliency performance objectives

"Hard" strategies...

- Temporary flood walls
- Install water level sensors
- Purchase temporary water pump
- Seal electrical conduits

Source: Robbin Peach, Massport, presentation at University of Rhode Island April 5, 2016, https://www.unols.org/sites/default/files/GBIII_April2016_ap05_0.pdf

THE PORT AUTHORITY OF NY & NJ

gineering Department

Design Guidelines Climate Resilience

1/22/2015

1.3 TEMPERATURE CHANGE GUIDANCE

Designs of infrastructure assets should account for the following temperature changes over the assets design life.

THE PORT AUTHORITY OF NY & NJ

Engineering Department

	2000	2025	2055	2085
Mean Annual Air Temperature	54°F	56.5°F	59°F	61°F
Days at or above 90°F	18	29	45	60
Days at or below 32°F	72	55	45	36

Design Guidelines Climate Resilience

1/22/2015

1.3 TEMPERATURE CHANGE GUIDANCE

Designs of infrastructure assets should account for the following temperature changes over the assets design life.

THE PORT AUTHORITY OF NY& NJ

Engineering Department

	2000	2025	2055	2085
Mean Annual Air				

1.4 Precipitation Change Guidance

Designs of infrastructure assets should account for the following precipitation changes over the assets design life. Current climate projections do not include rainfall intensity curves.

Design Guidelines Climate Resilience

	2000	2025	2055	2085
Mean Annual Precipitation	50.1"	52"	54"	55"
Annual Intense Rain Events (rainfall ≥ 2 inches per day)	3	3	4	4

LAST UPDATED

Designs of infrastructure assets should account for the following temperature changes over the assets design life.

2000 2025 2055 2085 Mean Annual Air

THE PORT AUTHORITY OF NY & NJ

Engineering Department

1.4 Precipitation Change Guidance

Designs of infrastructure assets should account for the following precipitation changes over the assets design life. Current climate projections do not include rainfall intensity curves.

Design Guidelines Climate Resilience

	2000	2025	2055	2085
Mean Annual Precipitation	50.1"	52"	54"	55"
Annual Intense Rain Events (rainfall ≥ 2 inches per day)	3	3	4	4

1.5 SEA LEVEL RISE GUIDANCE

Designs of infrastructure assets should account for the following mid-range estimates in sea level:

LAST UPDATED 1/22/2015

	2004	2025	2055	2085
Mean Sea Level	Baseline	+ 6"	+ 16"	+ 28"

1.3 TEMPERATURE CHANGE GUIDANCE

Designs of infrastructure assets should account for the following temperature changes over the assets design life.

	2000	2025	2055	2085	
Mean Annual Air					

THE PORT AUTHORITY OF NY & NJ

Engineering Department

1.4 Precipitation Change Guidance

Designs of infrastructure assets should account for the following precipitation changes over the assets design life. Current climate projections do not include rainfall intensity curves.

Design Guidelines Climate Resilience

	2000	2025	2055	2085
Mean Annual Precipitation	50.1"	52"	54"	55"
Annual Intense Rain Events (rainfall ≥ 2 inches per day)	3	3	4	4

1.5 SEA LEVEL RISE GUIDANCE

Designs of infrastructure assets should account for the following mid-range estimates in sea level:

Table 2 – Flood Protection Levels

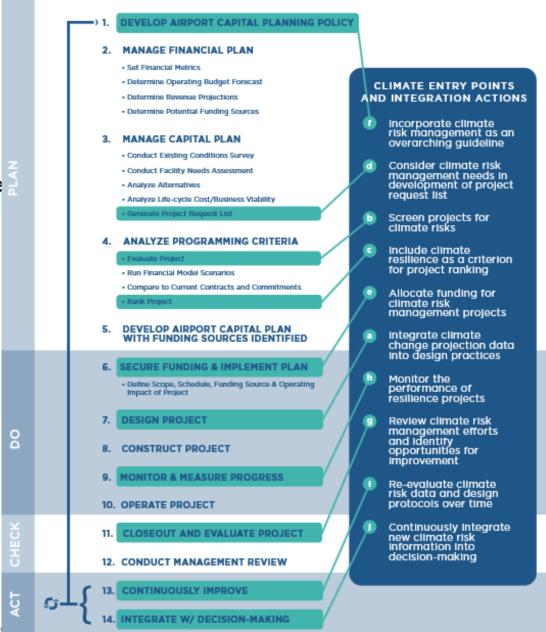
LAST UPDATED 1/22/2015

		Non	Critical Ass	sets	Critical Assets			
	Asset Design Life	Code Requirement	Sea Level Rise Adjustment	Final Flood Protection Elevation	Code Requirement	Sea Level Rise Adjustment	Final Flood Protection Elevation	
	Up to 2020	12"	6"	FEMA 1% Elevation + 18*	24"	6"	FEMA 1% Elevation + 30"	
	2021-2050	12"	16"	FEMA1% Elevation + 28"	24"	16"	FEMA1% Elevation + 40"	
	2051-2080	12"	28"	FEMA1% Elevation + 40*	24"	28"	FEMA1% Elevation + 52"	
a	2080+	12"	36"	FEMA1% Elevation + 48*	24"	36"	FEMA1% Elevation +60"	

CF proprietary and confidentia

Lessons Learned

What drives success?


Leadership

- Identifying the strategic priority + business case
- Find champions who can 'sell' the concepts to management and to staff 'on the ground'

Integration

 Recognizing and addressing climate change risks through existing systems

CAPITAL PLANNING PROCESS

Where to start?

- Don't build things today that are not designed for the conditions they will face in their lifetime
 - Identify the need as early as possible in the process
 - Lots of guidance on how to work with climate data from and engineering perspective
- Improve routine communication among stakeholders
 - Port authority, port tenants, port users, local government, nearby residents, Coast Guard, USACE, etc.
- Identify climate-linked performance metrics and track trends over time
 - Climate changes (water levels, frequency of certain thresholds being exceeded)
 - Climate change impacts (frequency of flooding, frequency/duration of shutdowns)
 - Operational performance measures (volume of freight moved, operating costs, power outages)

Example of phased adaptation

Incorporate SLR and other climate changes into design of new infrastructure opportunistically

Identify data and research needs

Track frequency of climate-related disruptions over time Develop and implement a comprehensive resilience strategy

Incorporate climate change considerations into long-range plans, establish policy to adapt

Establish a predisaster plan to facilitate climateresilient recovery Implement asset-specific adaptation strategies (e.g., protection, retrofits)

Final thoughts

- Adaptation can apply to all levels of decision-making
- Adaptation options may not be technologically innovative or climate change-specific – many will involve well-established technologies and management approaches applied wisely to address climate risks

Thank you!

Anne Choate

anne.choate@icf.com

