Methods and Issues with Predicting the Impact of Periodic Flooding using a Range of Sea-Level Change Scenarios on Transportation Infrastructure

Michael S. Scott, PhD, GISP
Salisbury University
msscott@salisbury.edu

Spring High Tide, Wingate, MD 2007

Wanda Diane Cole, RC&D Inc. in <u>Sea</u> <u>Level Rise: Technical Guidance for</u> <u>Dorchester County</u>, 2008

Rising Tides will Impact Flooding

- Maryland has 3,190 miles of coast (longest relative to its area in the US!)
- The Mid-Atlantic region is predicted to have some of the worst impacts of SLC because of the combination of rise, subsidence, and relative position to the North Atlantic Gyre
- Maryland SHA needs a measured way to prioritize and mitigate the potential impact of baseline SLC on SHA assets, as well as the increased impact of coastal flooding that will result

Overall Process of SLC Vulnerability Assessment

- High-resolution LiDAR data
- USACE estimates of SLC (SLR + subsidence), both MSL and MHHW in both 2050 and 2100
- Tidal flow network to remove unconnected inundated areas
- HAZUS-MH flood depth grids for 10%, 4%, 2%, 1%, and 0.2%-chance floods
- Hazard Vulnerability Index (HVI)
- Network trace analysis to calculate SLC impact

Create Inundation Areas

- Identified vulnerable elevations; elevations below anticipated sealevel rise
- 4 SLC scenarios
 - 2050 MSL
 - 2050 MHHW
 - 2100 MSL
 - 2100 MHHW
- Adjust current DEM to be future coastline
- "Bathtub" Model

Trouble with the "Bathtub" Model

- A selection of all areas less than the value of SLC will include local minima
- The local minima are not connected to the tidal waterway and therefore, are unlikely to be impacted by SLC

To Solve the Local Minima Problem

- Take NHD high-resolution flowlines
- Create a network dataset
- Use the Bay and other polygonal tidal water bodies as network destinations
- Find all flowlines that connect to tidal waters
- Delete any SLC area that does not intersect a tidal flowline

Create Flood Depth Grids

- Modeled expected depth of flood water; each grid cell contains water depth calculation
- Recurrence intervals of 10%-, 4%-, 2%-, 1%-, and 0.2%-chance floods
- 4 SLC scenarios 2050 & 2100, MSL & MHHW
- Thus, 20 depth grids per county
- Manipulate the current DEM to simulate each SLC scenario
- Calculate the depth of flooding using HAZUS

HAZUS MH 2.1

- Developed for FEMA to model potential losses from earthquakes, floods, and hurricane wind
- Flood model calculates depth grids per recurrence interval using simplified versions of best available hydrology and hydraulic models
- Simplified versions match the data we have available and the scale of our analysis
- Significant amount of pre- and post-event accuracy testing with good results

Today, MSL 2050, 1% Flood Depth

Development of Hazard Vulnerability Index (HVI)

- Once the modeled depth of water, both with and without coastal flooding, was calculated, we need a way to assess the vulnerability of each road segment
- Priority is given to pre-defined evacuation routes, higher route functional classes, and deeper water
- HVI = ([Evacuation Route]*.5+1) * ([Flood Depth]+.01)/4) * (1.0/[Functional Class])*.7

Percent of total road length by HVI and flood recurrence in 2015 MSL

Level	No Flood	10% Chance	4% Chance	2% Chance	1% Chance	o.2% Chance
1	100.000%	82.745%	78.457%	73.509%	71.730%	66.110%
2		17.255%	21.536%	26.372%	28.035%	32.995%
3			0.007%	0.120%	0.235%	0.895%
4						

Percent of total road length by HVI and flood recurrence in 2050 MSL

Level	No Flood	10% Chance	4% Chance	2% Chance	1% Chance	o.2% Chance
1	95.943%	67.751%	65.429%	60.833%	57.773%	52.160%
2	4.057%	31.823%	33.711%	38.170%	41.186%	46.538%
3		0.426%	0.860%	0.997%	1.040%	1.302%
4						

Network Trace Analysis

- Goal: Quantify SLC impact for prioritization
- Origin/Destination Routing
 - Random origins representing population distribution
 - Known destination representing egress points
- Find optimal path today between each O/D
- Find optimal path using HVI results
- Calculate anticipated changes to optimal path
 - Lengthening vs unreachable

Initial Observations: % Reachable Locations

Impact of Coastal Flooding and SLC on Transportation Access

Important Caveats

- SLC estimates are a moving target and uncertainty expands significantly in 2100
- Elevation data is not as accurate in certain land cover
- SLC will not be as consistent across counties as we have modeled
- Flood scenarios do not include wave setup
- Coastline change due to SLC is not modeled
- Flood recurrence interval changes due to SLC are not modeled
- Damage estimates for roads are not well-defined
- Depth/damage curves likely locally specific
- Economic impact of a road closure?

Conclusions

- MDSHA has found the data useful for project prioritization
- We have been able to repurpose the depth grids for individual storm response
- Also being used for community vulnerability assessments
- Riverine modeling is currently underway
- But, significant uncertainty in changing recurrence intervals