

Presentation Overview

Brief Overview of Pilot Study focusing on:

Study Approach

Results/Findings/Lessons Learned

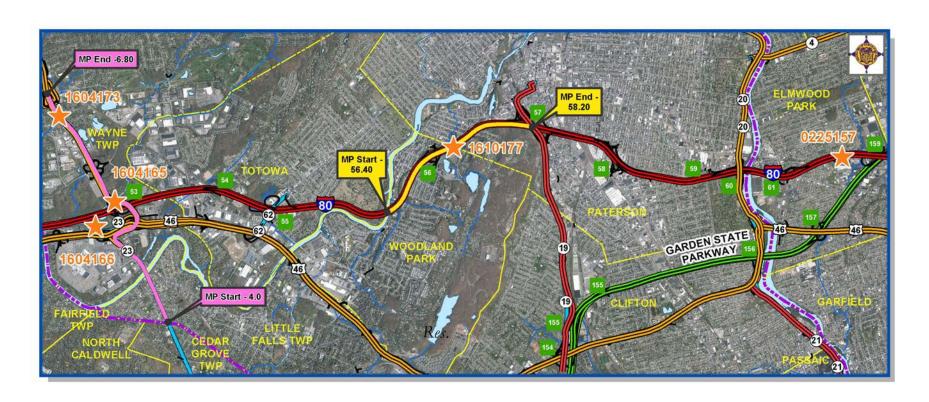
Next Steps

Aerial View of Study Area: I-80

Pilot Overview

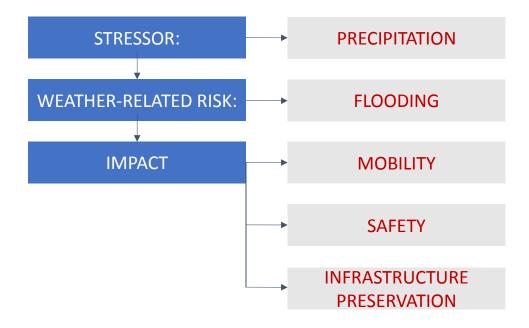
2017 selected with 5 other states Arizona, Kentucky, Massachusetts,
Maryland, & Texas, to participate in a
Pilot Program focused on extreme
weather, climate risks, and asset
management

Aerial View of Study Area: I-80


Extreme Weather & Asset Management

- Original goal determine how extreme weather conditions, precipitation, could affect culverts as the "asset class" in "Asset Management"
- Could not study the state's entire culvert inventory so a focused study area was selected based on data that showed areas *vulnerable* to flooding – Drainage Management System (DMS)

I-80 Culvert (located at MP 57.35 on Westbound direction)


Case Study Area

Linking Extreme Weather and Asset Management

- Asset Management, Extreme
 Weather, and Proxy Indicators Pilot
 - The research refocused to identify root cause(s) of flooding in the targeted area to develop the most cost-effective risk management mitigation to be considered in lifecycle planning

Understanding The Problem

Compile & Integrate Data

Internal Sources:

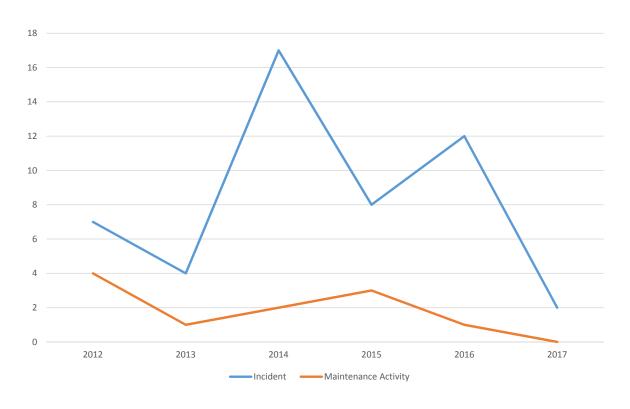
- Drainage Management System (DMS)
- Maintenance Management System (MMS)
- Culvert Inspection Reports (Bureau of Structural Evaluation and Bridge Management, SEBM)
- Operations Region's Input
- Crash Data (Bureau of Transportation Data and Safety, BTDS)

External Sources:

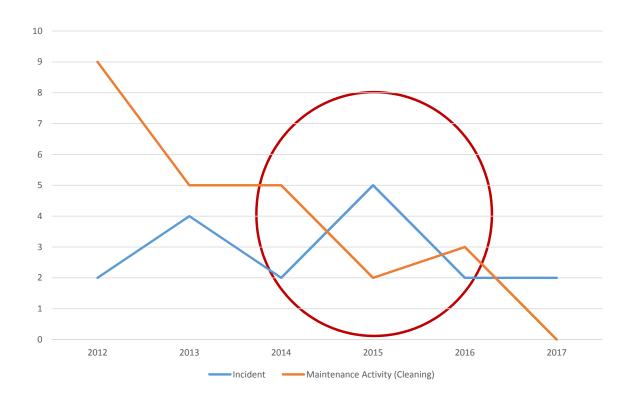
- Concept Development Reports from Design Team (Louis Berger)
- NOAA

Other:

- GIS


RANKING Rank Number	STD ROUTE Identifier	Begin MP	End MP
1)0000080_	56.43	58.22
2)0000035_	44.5	45.89
3)0000287_	35.7	36.6
4)0000017_	20.5	20.62
5)0000280_	_ 13	14.4
6)0000040_	59.6	63.8
7)0000018_	36.6	36.7
8)0000280_	9.5	9.67
9)0000046_	61.75	63
10)0000078_	56.3	57.5
11)0000287_	3	3.2
12)0000017_	17.6	17.68
13)0000208_	5.3	6
14)0000023	4	7

2016 DMS Rankings Snapshot


Data Analysis

- Data from DMS was sorted by year and location (mile post).
- Factors considered:
 - Total number of recorded flooding incidents in five-year period (2012-2017)
 - Number of recorded incidents by year
 - Number of recorded incidents by month
 - Repeated locations
 - Frequency of Maintenance Activities in the respective corridors
- Purpose: determine critical mile posts within case study area, lanes affected, other common/repeated factors.

I-80 Number of Incidents vs. Maintenance Activities (Cleaning) by Year (2012-2017)

Route 23 Number of Incidents vs. Maintenance Activities (Cleaning) by Year (2012-2017)

Comparison of Case Study Areas (2012-2017 Yr. Period)

	I-80	Route 23
Study area location:	MP. 56.43 to MP 58.22 (1.79 miles)	MP. 4.0 to MP 7.0 (3 miles)
DMS ranking (2016 data):	#1	#14
AADT in one direction:	62,515	29,092
Number of recorded incidents:	50	17
Critical areas:	WB between MP 57 – 57.5	SB between MP 6.8 – 62.82
Total number of maintenance activities in 5-yr. period:	18	42
- Cleaning activities (inlets/manholes/channels ditches/pipes):	11	27

Top Project Findings:

- 1. Understanding the root cause is key to developing cost-effective lifecycle management mitigation strategies and improve resilience analysis showed lack of maintenance activities had a direct correlation with increased flooding occurrences increased maintenance activities can achieve a desired state of good repair
- 2. Current locations at risk may not encompassed by climate change predictions/projections climate weather scenarios did not affect study area, flood inundation model did not impact study area but frequency and severity of rain events now and the immediate future will
- 3. Isolating asset classes may not provide an accurate representation of problems

How about the culverts ??

- As builts and inspection reports noted culverts were not contributing factors to flooding, drainage issues, not culverts....inlet spacing,
- Although designed and constructed some time ago without "extreme weather" considerations, function ok today, as long as they are maintained
- Reaffirms need to identify possible root causes of flooding, before strategies are developed to address risks of extreme weather

I-80 Culvert (located at MP 57.35 on Westbound direction)

Lessons Learned: Positives

- 1. Enhanced communication and coordination between internal and external stakeholders
- Understanding relationships:
 Established clear relationships
 between stressor, weather-related
 risk, and impact(s) to the roadway.

STRESSOR: INTENSE PRECIPITATION WEATHER-RELATED RISK: FLOODING MOBILITY INFRASTRUCTURE PRESERVATION SAFETY

Relationships

Lessons Learned: Challenges

- 1. Data collection efforts and data processing
 - Gaps in collection of road closure data/gaps in data management systems
 - Difficulty in obtaining weather-related incidents
- 2. Need for integration of management systems within NJDOT
 - Similar data currently housed in several management systems that do not communicate with one another
 - 3. Direct integration of extreme weather into asset management practices

Overcoming Challenges

- Study team used best available data to integrate, analyze and carry study approach
 - Using current practices in NJDOT helped to determine gaps and provide enhancements to processes
- The use of GIS served as a great tool to integrate and visualize data, as well as propose enhancements and future uses in NJDOT's asset management practices

GIS Progress - Where we want to go

Developing a "Resilience Management Tool/System" to identify vulnerabilities

- Digital elevation model (DEM) layer.
- National flood hazard layer from FEMA.
- Soil hydrologic group layer.
- In progress: precipitation historical data and projections, and maintenance activities.
- Data shows:
 - Project case study areas are in low terrain (between 50' 200').
 - Case study area soil group = low permeability.
 - Route 23 within 100-yr flood zone.

GIS – I-80 Digital Elevation Model

GIS – I-80 Flood Hazard Zones

GIS – I-80 Soil Groups

GIS – Rt. 23 Digital Elevation Model

GIS – Rt. 23 Flood Hazard Zones

GIS – Rt. 23 Soil Groups

For Final Report:

- 1. Continue data integration efforts to enhance GIS tool:
 - Culvert inventory data
 - NJTPA's Passaic River Basin Study Inundation projection models in I-80 case study area

NJDOT Actions/Continued integration of findings into asset management practices:

- 1. Use root cause analysis method in this study in other locations experiencing frequent flooding to identify cost-effective mitigation strategies
- 2. Increase maintenance activities at highly vulnerable locations; addressing current problems may increase resilience at these locations
- 3. Enhance technology tools and implement use of GIS tool during different stages of NJDOT's project delivery process

NJDOT Actions – Remaining gaps and needs:

- 4. Strengthen data collection methods/process related to extreme weather impacts to the roadway (road closures) "Weather Savvy Roads EDC 5"
- 5. Consider conducting hydrologic studies at the facility-level on assets located in vulnerable sites that are under-capacity, have high social exposure (high traffic volumes/long detour routes/employment/population/access to critical facilities) and are not planned for reconstruction/replacement. Develop problem statements for the critical assets identified to feed project delivery process
- 6. Conduct facility-level adaptation assessments on projects identified within vulnerable areas; consider the use of climate change projection data
 - 1. Recommendation to use I-80 reconstruction project as a pilot in resiliency building in NJDOT. The Westbound Widening/Reconstruction project, could serve as an example to measure the benefits of resiliency building in New Jersey.

Incorporating Study Results into Asset Management

- Root cause analysis identifies a method to evaluate and develop risk mitigation actions
- Better understanding of relationship between stressor, roadway system performance and cause of problem
- Incorporate study's recommendations into lifecycle planning in the planning, design/engineering, and maintenance/operations phases
- Enhance/implement the use of GIS as a "Resiliency Management System" to be incorporated into NJDOT's current process