NJ TRANSIT

SOUTH JERSEY TRANSIT PLAN

Travel Demand and Transit Potential

May 1989

Prepared By

DELAWARE VALLEY REGIONAL PLANNING COMMISSION Bourse Building, Philadelphia, Pennsylvania This report, prepared by the Transportation Planning Division of the Delaware Valley Regional Planning Commission, was financed by the NJ TRANSIT Corporation. The authors, however, are solely responsible for its findings and conclusions, which may not represent the official views or policies of the funding agency.

Created in 1965, the Delaware Valley Regional Planning Commission (DVRPC) is an interstate, intercounty and intercity agency which provides continuing, comprehensive and coordinated planning for the orderly growth and development of the Delaware Valley region. The region includes Bucks, Chester, Delaware, and Montgomery counties as well as the City of Philadelphia in Pennsylvania and Burlington, Camden, Gloucester, and Mercer counties in New Jersey. The Commission is an advisory agency which divides its planning and service functions among the Office of the Executive Director, the Office of Public Affairs, and four line Divisions: Transportation Planning, Regional Information Services Center, Strategic Planning, and Finance and Administration. DVRPC's mission for the 1980's is to emphasize technical assistance and services and to conduct high priority studies for member state and local governments, while determining and meeting the needs of the private sector.

The DVRPC logo is adapted from the official seal of the Commission and is designed as a stylized image of the Delaware Valley. The outer ring symbolizes the region as a whole while the diagonal bar signifies the Delaware River flowing through it. The two adjoining crescents represent the Commonwealth of Pennsylvania and the State of New Jersey. The logo combines these elements to depict the areas served by DVRPC.

DELAWARE VALLEY REGIONAL PLANNING COMMISSION

Publication Abstract

TITLE	Date Published: May 1989
NJ TRANSIT SOUTH JERSEY PLAN Travel Demand and Transit Potential	Publication No. 89010

Geographic Area Covered:

The nine counties of South Jersey, including Burlington, Camden, Gloucester and Mercer from within the DVRPC region and Atlantic, Cape May, Cumberland, Ocean and Salem from the area outside the DVRPC region.

Key Words:

Transit, planning, travel demand, population and employment projections, ridership estimation, trip generation and distribution, NJ TRANSIT, South Jersey

ABSTRACT

This report summarizes the work performed by DVRPC as part of NJ TRANSIT's study of South Jersey to estimate the potential transit market in 1995. The report is divided into chapters which pertain to the major tasks performed by DVRPC. These tasks involve: the estimation of the level of growth that reasonably can be expected to occur between now and 1995 in the various analysis areas of South Jersey; the estimation of the number and distribution of work trips between each analysis area; and, the estimation of the ridership potential of certain services in high travel demand corridors.

For More Information Contact:

Delaware Valley Regional Planning Commission Regional Information Services Center The Bourse Building 21 South 5th Street Philadelphia Pa. 19106 (215) 592-1800

CONTENTS

١.		1
11.	ESTIMATION OF 1995 DEMOGRAPHIC AND EMPLOYMENT DATA	3
	Analysis Area System	3
	Population and Employment Projections	3
111.	WORK TRIP ESTIMATION	17
	Area Types	17
	Trip Productions and Attractions	17
	Trip Distribution	18
	Travel Projections	24
IV.	TRANSIT POTENTIAL	26
	Most Trip Growth	26
	Greatest Total Trips	26
	Highest Trip Densities	27
	Significant Commuter Flows	29
	Pattern of Commuter Travel	32
V.	ESTIMATION OF RIDERSHIP POTENTIAL	40
	Gloucester County Corridor	40
	Burlington County (Route 38) Corridor	41
	Cherry Hill to Trenton Corridor	43
	Summary of Ridership Potential	43

FIGURES

1.	SOUTH JERSEY REGION 2
2.	DEMOGRAPHIC & EMPLOYMENT PROJECTIONS - County Summary
3.	POPULATION 1980 vs 1995 - County Bar Chart
4.	EMPLOYED RESIDENTS 1980 vs 1995 - County Bar Chart
5.	EMPLOYMENT 1980 vs 1995 - County Bar Chart
6.	EMPLOYMENT GROWTH RATES - County vs Dept. of Labor
7.	POPULATION & EMPLOYMENT PROJECTIONS - Municipality8
8.	TRAVEL MARKET MODEL
9.	INPUT DATA TO THE TRAVEL MARKET MODEL
10.	COMPARISON OF ESTIMATED & CENSUS WORK TRIPS - 1980
11.	1995 ESTIMATED WORK TRIPS & TRIP GROWTH - Summary
12.	WORK TRIP DESTINATION RANKINGS
13.	FEEDER ZONES TO HIGH INTENSITY EMPLOYMENT ZONES
14.	MAJOR WORK TRIP FLOWS - ATLANTIC CITY
15.	MAJOR WORK TRIP FLOWS - TRENTON
16.	MAJOR WORK TRIP FLOWS - CAMDEN
17.	MAJOR WORK TRIP FLOWS - CHERRY HILL
18.	MAJOR WORK TRIP FLOWS - DOVER AREA 37
19.	MAJOR WORK TRIP FLOWS - PHILA CBD
20.	PERCENT BY DISTANCE MODEL 42

I. INTRODUCTION

In June 1987, New Jersey Governor Thomas Kean formally endorsed NJ TRANSIT's commitment to a comprehensive study of transit needs in southern New Jersey. As part of the South Jersey Transit Study, NJ TRANSIT contracted DVRPC to provide technical planning data on population, employment, and travel patterns in the study area for 1995. This transit plan will cover all of the nine counties of southern New Jersey, as designated in Figure 1.

NJ TRANSIT's overall study has two major goals:

- Identify the potential areas for expanded transit service in South Jersey
- Identify innovative services that NJ TRANSIT could adopt to meet the area's travel needs.

In pursuit of these general goals, the study recognized a number of more specific objectives:

- Maximize the attractiveness of the Atlantic City Rail Line for commuters and
- Discover ways to serve commuters who travel to new suburban work sites from older urban areas. The objective is to attract a significant share of these travel markets to transit while at the same time relieving suburban congestion in those corridors that have had high rates of growth.
- Examine NJ TRANSIT bus routes to find the best configuration of routes to serve riders' needs in South Jersey.
- Identify railroad rights-of-way that could be used by future transit services or other public purposes.

Work began in August 1987 at a grassroots level when NJ TRANSIT staff began a series of interviews with numerous transit and planning professionals in southern New Jersey and the region's elected officials. An Advisory Committee was formed providing a forum for issues to be debated and mutual interests to be discussed. DVRPC, in its role as transportation planning coordinator for much of the study area, participated as an active member of the committee.

DVRPC's specific technical role in the South Jersey Transit Study was to compile a database of population and employment information for all areas covered by the study. Estimates of travel demand by commuters in 1995, identification of potential transit corridors, and an assessment of the feasibility of new transit services were also included in DVRPC's tasks.

Other tasks in the South Jersey Transit Study performed by NJ TRANSIT and its consultants included a market research effort to determine casino employee preferences and attitudes toward the Atlantic City Rail Line and operational analyses of options for connecting that line to rail service in North Jersey.

This report summarizes the work of DVRPC to estimate the potential transit market in 1995 for proposed NJ TRANSIT services. The report is divided into chapters which pertain to the major tasks performed by DVRPC. These tasks involve: the estimation of the level of growth that reasonably can be expected to occur between now and 1995 in the various analysis areas of South Jersey; the estimation of the number and distribution of work trips between each analysis area; and, the estimation of the ridership potential of certain services in high travel demand corridors.

II. ESTIMATION OF 1995 DEMOGRAPHIC AND EMPLOYMENT DATA

The first step in the estimation of travel demand is to determine the number of people who desire to make a trip and the number of possible destinations to which they could travel. For modelling the potential demand for <u>commuter</u> travel by transit, it is best to estimate the number of employed persons within the resident population and the number of jobs available in each of the study areas.

Analysis Area System

DVRPC determined that for a study with such a broad geographic scope, the smallest study unit, referred to as an analysis zone, would be the minor civil division (MCD) or aggregations of very small MCD's. The nine counties of South Jersey are divided into 213 separate MCD's. These range in size from over 100 square miles to under 1/4 square mile in size. In keeping with the purposes of this study, some of the smaller MCD's have been combined with their larger neighbors to form a single analysis area zone. A total of 127 internal study area zones were created. To permit analysis of travel to and from those places outside of the South Jersey study area, an additional 19 external zones were created.

Population and Employment Projections

To arrive at the most reasonable and generally acceptable estimates of employed residents and employment (jobs) at the MCD level, DVRPC invited the county planning departments of the study area to review the most recent population and employment projections and "sign off" on their use for this study.

For the counties within the DVRPC region, the most recent projections were the decennial estimates approved by the DVRPC Board in July 1988. For Salem, Cumberland, Cape May and Atlantic counties, the most recent projections were those made in the NJ DOT "South Jersey Highway Improvement Study". Since Ocean County was not a participant in the NJDOT study nor does it have a formal MPO process for developing long range projections, the county planning department staff was asked to develop 1995 estimates specifically for this study.

For the MCD's in the DVRPC counties, the 1995 population and employment values were derived by a straight line interpolation between the Board approved 1990 and 2000 estimates. For the counties covered by the NJ DOT study, adjustments were made by the counties to the allocation of population and employment growth among the MCD's within a county based on more recent development data. For all MCD's, 1995 Employed Residents were estimated by applying the 1980 ratio of employed residents per capita (factored to account for increased labor participation rates) to the 1995 estimate of population.

Figure 2 shows the 1980 and 1995 Population, Employed Residents and Employment Estimates for each county in the study area. The table also shows the percentage growth for comparison purposes.

Overall, the South Jersey area is expected to experience in excess of 20% growth in population between 1980 and 1995, with a slightly higher growth in employed residents. The rate of growth will be more than twice as rapid in the non-DVRPC portion of South Jersey as in the already more densely developed DVRPC urban core. In terms of absolute growth, nearly half a million new residents are expected to populate the South Jersey area by 1995. Sixty percent of that growth will occur in the coastal counties of South Jersey.

Employment is expected to grow nearly twice as fast as population as South Jersey becomes more of a workplace in its own right, rather than bedroom communities for Philadelphia and North Jersey/New York. However, the addition of one third of a million new jobs in South Jersey is not projected to follow the same pattern as the population growth. Nearly sixty percent of the job growth will occur in the DVRPC portion of South Jersey.

Figures 3, 4 and 5 graphically portray the expected growth by county and sub-region for each of the three basic data elements: population, employed residents and employment. Moderate increases in population

are projected for each county except Ocean (Figure 3), where pressure from the north is expected to continue to intense development of its northern tier and coastal communities. Five of the nine counties are projected to experience sizable jumps in employment, with Atlantic County taking the largest gains followed by Camden, Burlington, Ocean and Mercer.

A comparison was made between the county planning department and unpublished employment projections made by the NJ Department of Labor (DOL). Because of definitional differences, the method of analysis chosen compared the rates of growth implied by each set of projections.

Figure 6 shows the growth rates for each county and sub-region. As can be seen in the graph, the DOL growth rate for the whole DVRPC sub-region is about 7 percentage points higher than the DVRPC estimate while the DOL rate for the non-DVRPC area is about 7 points lower than the DVRPC projected growth rate. These rates are not too significantly different. However, at the county level there are some rather striking differences. DOL projects much higher rates of employment growth for Burlington, Mercer and Salem counties and much lower rates of growth for Gloucester, Atlantic, Cape May and Ocean counties. But even these projections by DOL are problematic in that there is an implied constant growth rate over their 24 year horizon.

Figure 7 is a table of the MCD level base data for 1980 and 1995 arrayed by county. For the DVRPC subregion, an ongoing program of MCD level data projection has provided a consistent set of population and employment numbers for transportation planning purposes. In the non-DVRPC counties, it is more typical to find MCD level projections only for population. For these counties, the employment projections at the MCD level are less consistent and contain notable deficiencies. For instance, in Atlantic County only 5 of 23 municipal employment projections differ from 48% growth. While there is bound to be employment growth in most MCD's, it is highly unlikely to be exactly the same rate of growth for each. The same situation occurs in Cape May, Ocean, Salem and to a lesser extent in Cumberland counties. It is far more likely that most of a county's employment growth will occur in certain key development areas and that the rates of growth by MCD will vary widely.

Atlantic County Planning staff gave particular attention to the projection of casino employment and, therefore, Atlantic City employment. These projections appear to be reasonable, despite the tremendous increases, based on the expected number of casinos now open and expected to be open in 1995. In 1980 when there were only four casinos open, casino employees numbered 16,300. In 1985 when there were 11 casinos open, casino employees numbered 38,400. By 1995 there could be 15 to 17 casinos open. The county estimates that the casinos will be employing 60,600 at that time. Both the actual data and the estimates imply an average of just over 4000 employees per casino.

Furthermore, in 1985 the total number of jobs in Atlantic City was 1.6 times the number of casino jobs. On that basis alone, it could be expected that 96,000 total jobs could exist in Atlantic City in 1995. The county estimate of less than 91,000 implies either a decreasing number of spin-off jobs or a limit to the number of jobs the City can support and that must locate on the mainland.

Figure 2 Demographic and Employment Projections - County Summary

T GROWTH		EMP	48.3%	35.6%	41.8%	30.0%	37.3%	91.2%	2.3%	8.0%	47.8%	62.8%	53.4%	42.6%
95 PERCEN	EMP	RES	25.4%	19.4%	24.0%	19.2%	21.7%	36.3%	13.1%	22.0%	56.3%	53.7%	40.6%	28.3%
1980 - 19		dОЧ	19.4%	12.5%	18.1%	12.4%	15.2%	29.0%	7.3%	16.1%	47.2%	49.0%	35.5%	22.9%
1 1 1		EMP	180,619	249,510	87,510	234,150	751,789	165,224	26,426	59,816	37,185	123,702	412,353	1,164,142
- 1995	EMP	RES	207,964	229,639	101,761	165,645	705,009	113,039	28,635	64,481	44,653	184,439	435,246	,140,256
8 8 8 8		dOd	432,785	530,590	236,065	346,100	1,545,540	250,501	69,400	154,284	121,110	515,750	1,111,045	2,656,585 1
		EMP	121,771	183,974	61,722	180,107	547,574	86,397	25,840	55,380	25,153	76,004	268, 774	816,348
- 1980	EMP	RES	165,874	192,336	82,046	138,963	579,219	82,915	25,315	52,866	28,561	119,996	309,653	888,872
		dOd	362,534	471,611	199,917	307,863	1,341,925	194,195	64,664	132,878	82,266	346,038	820,041	2,161,966
		AREA	817.64	220.71	328.36	226.00	1592.71	566.97	350.88	504.35	263.37	637.09	2322.66	3915.37
		COUNTY	BURLINGTON	CAMDEN	GLOUCESTER	MERCER	DVRPC REGION	ATLANTIC	SALEM	CUMBERLAND	CAPE MAY	OCEAN	NON-DVRPC REGION	SOUTH JERSEY AREA

T GROWTH	EMP		51.7% 33.2%	30.4%	14 1%	41.9%	45.4%	58.3%	23.0% 58.0%	6 ⁷ .9%	34.9%	56.2%	41.8% 18.5%	48.8%	87.5%	46.8%	73.1%	62.2%	59.4% 43.7%	54.8%	38.0%	41.9%	63.7% 60.0%	31.9%	80.1%	50.6%	28.7%	46.3%	48.3%
95 PERCEN	RES		31.4% 6.7%	7.9%	6.7%	32.1%	6.8% 4.0%	15.0%	50.5% 11.1%	71.8%	17.2%	19.9%	25.4% 43.9%	4.9%	51.2%	17.5%	8.1%	23.5%	24.6% 19.2%	6.9%	8.4%	2.8%	47.9%	36.0%	39.6%	101.6%	л.7% 2%	26.1%	25.4%
1980 - 19	РОР		25.2% 1.6%	2.8%	4 5%	25.8%	1.7%	9-5%	24.5% 5.8%	63.6%	11.6%	14.2%	19.5% 37.0%	-0.0%	44-0%	11.9%	5.5% 69.1%	17.6%	13.5%	1.8%	3.2%	-2.1%	40.8%	29.5%	32.9%	92.0%	0.7%	20.1%	19.4%
1 1 1	EMP		220 1.365	1,925	8,555 9,555	o, ryu 765	9,110 1,270	5,135	85 2.365	9,020	110	2,135	2 , 075 865	8, 485	7,310	20,525	9,260 10,250	11,309	3,930	890	5,190	1,515	1,090	955	760 105	2,500	9,285 540	2,845	180,619
- 1995	RES		582 1,139	2,203	4,691	1,413	8,064	8,083	2,616 5.226	17,720	CC2 4	1,746	3,189 1,648	10,852	11,426	162,2	4,817	14,817	4,741 4,051	565	3,895	1,491	2,796 2,008	1,621	3,490	3,334	18,494	1,511	207,964
1 1 1 1	POP		1,655 2,965	4,565 8,460	10,705	4,865	16,345	16,215	4,740 9,815	35,240	520 10 177	3,695	6,255 3,415	20,515	25,375 5,340	17,460	79,780	16,765	10,690 8.040	1,220	8,195	3,005	6,390	3,485	8,290 045	6,495	40, 185 2, 285	3,640	432,785
1	EMP		145 1,025	1,476	267,2	4, yyy 539	6,266 1,082	3,243	69 1.497	4,559	100 4 541	1,367	1,463 730	5,701	3,902 673	13, 978	5,920	6,973	8, U82 2, 734	575	3,760	1,068	666 816	724	422	1,660	7,217	1,945	121,771
- 1980	RES		443 1,068	2,041	4,276	1,070	7,552	7,028	2, 005 4, 702	10,317	25U 4 206	1,456	2,542	10,340	7,557 2,310	6,634	4,451 8,115	12,001	5,804 3,400	528	3,595	1,450	1,891	1, 192	2,500	1,654	17,494	1,198	165,874
1 1 1 1	POP		1,322 2,919	4,441	10,246	3,867	16,072 3,720	14,803	5,814 9,273	21,543	922 0 115	3,236	5,236	20,525	17,622 4,958	15,604	17,614	14,258	9,007 7,085	1,198	7,941	3,068	4,537 8,808	2,691	6,236 920	3,383	39,912	3,031	362,534
	AREA		77.35 0.54	0.94	3.44	21.81	7.57	6.91	5.65 2.86	29.65	0.5U 9.65	6.58	13.34 23.09	3.72	40.29	15.18	22.15	21.85	11.58	0.76	04.0/	0.70	46.61	29.34	42.64	11.04	7.60 05.38	1.65	817.64
	ZONE MUNICIPALITY	BURLINGTON COUNTY	16 BASS RIVER 17 BEVERLY	18 BORDENTOWN CITY	19 BURLINGTON CITY	25 CHESTERFIELD	20 CINNAMINSON	21 DELRAN	29 EASTAMPTON 17 EDGEWATER PARK	22 EVESHAM	18 FIELDSBORD 23 FLORFNCF	24 HAINESPORT	00 24 LUMBERTON 25 MANSFIFLD	26 MAPLE SHADE	27 MEDFORD TWP 27 MEDFORD LAKES	28 MOORESTOWN	Z9 MOUNT HOLLY 30 MOUNT LAURFI	31 NEW HANOVER	51 NOKIH HANOVER 32 PALMYRA	33 PEMBERTON BORO	33 PEMBERIUN IWP 34 RIVERSIDE	32 RIVERTON	35 SHAMONG 36 SOUTHAMBTON	25 SPRINGFIELD	37 TABERNACLE	29 WESTAMPTON	38 WILLINGBORO	31 WRIGHTSTOWN	

. GROWTH EMP		8 9 9 9 9 9 9 9 9 9 9 9 9 9
25 PERCENI EMP RES		40400000000000000000000000000000000000
1980 - 199 POP		
EWD '		2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
- 1995 EMP RES		229 229 229 229 229 229 229 229
		<i><i><i>o</i>⁻<i>v</i>,<i>v</i>,<i>v</i>,<i>v</i>,<i>v</i>,<i>v</i>,<i>v</i>,<i>v</i>,<i>v</i>,<i>v</i>,</i></i>
- EMP -		2, 119 770 770 770 770 770 770 770 842, 583 74, 144 7178 7, 178 7, 178 7
- 1980 EMP RES		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
- d0d 		9,533 7,721 7,721 7,721 7,721 7,721 7,724 7,728 7,729
AREA		20.22 20.23 20.24 20.25 20.25 20.27 20.25 20.27 20.25 20.27 20.25 20.27
ZONE MUNICIPALITY	CAMDEN COUNTY	 40 AUDUBON PARK 40 AUDUBON PARK 41 BARRINGTON 43 BERLIN BORO 43 BERLIN BORO 43 BERLIN BORO 43 BERLIN BORO 44 CAMDEN 45 CHERRY HILL 46 CLEMENTON 47 GOLCESTER TWP 48 GLOUCESTER TWP 49 GLOUCESTER TWP 49 GLOUCESTER TWP 49 GLOUCESTER TWP 49 GLOUCESTER TWP 40 GLOUCESTER TWP 41 HADDON HEIGHTS 53 LAUREL SPRINGS 53 LAUREL SPRINGS 53 LAUREL SPRINGS 53 LAUREL SPRINGS 54 PRONLIA 55 SOMENDALE 55 WINSIDE 56 VOORHERD 57 WATERFORD 58 WINSION 57 WATERFORD 58 WINSION

ΗT			***************************************	%
VT GROW	EMP		0.0202020202020202020202020202020202020	4-0
95 PERCEI	EMP RES		0,1+4,0,2,8,8,8,8,8,2,2,8,2,2,2,2,2,2,2,2,2,2	24 °U%
1980 - 19	рор			10.1%
- - - -	EMP		20200000000000000000000000000000000000	01.C, 18
- 1995	RES		10,559 10,559	101,101
	dOd		8880 8800 8900 80000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000	con'oc7
	EMP		478855799588557995885579958588557995858579958585799585857995858579958585799585857995855995795559555	771,10
- 1980	RES		200 200 200 200 200 200 200 200	940,20
	dOd		222 222 222 222 222 222 222 222	117,711
	AREA		21-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	00.020
	ZONE MUNICIPALITY	GLOUCESTER COUNTY	78 CLAYTON 79 DEPTFORD 81 ELX 81 ELX 82 FRANKLIN 83 GLASSBORO 83 GLASSBORO 84 HARRISON 85 LOGAN 85 LOGAN 85 LOGAN 86 MATTUA 87 NATTONAC 87 NATTONAC 87 NATTONAC 88 PALLSBORO 91 SOUTH HARRISON 92 WEDDESBORO 92 WEDDESBORO 93 WETOTEPTFORD 94 WETOTILLE 95 WOODBURY 95 WOODBURY 96 WOODBURY 96 WOODBURY	

IT GROWTH	EMP		39.4%	12.4%	26.4%	26.6%	43.7%	37.3%	71.4%	58.9%	47.0%	8.8%	8.3%	222.0%	185.8%		30.0%
95 PERCEN FMD	RES		22.0%	8.6%	19.2%	7.7%	15.4%	16.6%	38.1%	15.0%	12.2%	24.7%	5.2%	109.3%	96.6%	-	19.2%
1980 - 19	POP		16.2%	3.5%	13.5%	2.6%	6.9%	11.1%	31.5%	9.5%	6.8%	18.8%	0.2%	99.3%	87.2%		12.4%
1 1 1 1	EMP		11,590	33,095	31,975	4,285	595	3,800	25,515	3,120	16,430	11,665	69.040	2,740	20,300		234,150
- 1995 - EMD	RES		12,396	18,312	48, 761	2,393	1,206	6, 185	13,361	1,179	6,620	8,349	34,936	3,612	8,334		165,645
4 1 1 1	POP		24,450	36,050	94,005	4,700	2,200	12,100	25,945	2,310	12,855	16,250	92.295	6,950	15,990		346,100
1 1 1 1	EMP		8,315	29,452	25,304	3,386	414	2,767	14,887	1,964	11, 178	10, 722	63.765	851	7,102		180,107
- 1980 FMD	RES		10,160	16,856	40,004	2,221	1,045	5,303	9,674	1,025	5,903	6,695	33.211	1,726	4,240		138,963
, , ,	dOd		21,041	34,842	82,801	4,581	2,001	10,893	19, 724	2,109	12,035	13,683	92,124	3,487	8,542		307 , 863
	AREA		15.60	15.13	39.38	1.23	0.75	58.00	21.87	0.99	1.76	16.25	7.50	20.70	26.84		226.00
	ZONE MUNICIPALITY	MERCER COUNTY	98 EAST WINDSOR	96 EWING	97 HAMILTON	98 HIGHTSTOWN	99 HOPEWELL BORO	99 HOPEWELL TWP	100 LAWRENCE	99 PENNINGTON	101 PRINCETON BORD	101 PRINCETON TWP	102 TRENTON	103 WASHINGTON TWP	104 WEST WINDSOR		

Figure 7 Population and Employment Projections by Municipality (continued)

			- 1980		8 8 9 9	- 1995		1980 - 1	995 PERCENT	GROWTH
	AREA	POP	EMP	EMP	ЧОЧ	EMP RES	EMP	POP	EMP	EMP
	34.35	2,680	1,022	340	2,837	1,136	348	5.9%	11.2%	2.4
	0.89	1,569	686	1,231	1,661	763	1,258	5.9%	11.2%	~~~
	00°°C1	1,547	280	2 022	1,500	025 783	290 2	%~~~ %~~~	11.7%	20
	38.10	1, 784	614	596	1,889	683	610	5.9%	11.2%	5.3
	20.08	1,847	713	868	1,955	792	888	2°.8%	11.1%	200
	24.40	13,804	5,452	7,630	14,116	5,854	7,801	% % %	%7°0-	
	37.40	2,810	1,258	39	3,277	1,540	14	16.6%	22.5%	5.1%
	46.50	6,954	2,770	469	8,571	3,585	480	23.3%	29.4%	2.3
	25.30	2,887	1,199	230	3,056	1,333	235	5.9%	11.1%	2.3
	2.70	6,959	2,438	7,776	7,368	2,710	7,952	5.9%	11.2%	2.3%
	17.90	8,384	3,460	852	8,873	3,845	872	5.8%	11.1%	2.3
	40.10	3,139	1,383	421	3,932	1,819	430	25.3%	31.5%	2.1
	1.56	3,250	1,291	1,635	3,441	1,435	1,673	5.9%	11.2%	2.33
.,	88.048	64,664	215, 52	25,840	69,400	28,635	26,426	7.3%	13.1%	2.3

GROWTH EMP	6.2% 1.1%	0.9%	1.0%	11.3%	1.6% 8.9%	8.0%	8.0%
95 PERCENT EMP RES	7.3%	20.7%	7.9% 15.5%	41.9% 24.0%	13.8% 28.0%	26.0%	22.0%
1980 - 19 POP	2.2% 11.3%	14.9%	2.8% 10.0%	35.2% 18.1%	8.4% 21.9%	20.0%	16.1%
 EMP	12,600 545	329 329 782	135	1,700 13,800	1,040	27,600	59,816
- 1995 EMP RES	7,507	1,189 737 2,577	2,188 038	2,046 13,321	666 3,751	26,973	64,481
dod	19,200 5,200	22,200 2,940 400	1,000 4,800 458	6, 186 29, 300	1,480 8,300	64,500	154,284
EMP -	11,863 530	457 326 427	133 197 350	1,528	124 955	25,545	55,380
- 1980 EMP RES	6,999 1.508	, 985 652 7.183	1, 895 769	1,442	585 2,931	21,408	52,866
- d0d	18, 795 4, 674	2,523	, 973 4, 365 2, 116	4,577 24,815	1,365 6,810	53, 753	132,878
AREA	6.50 34.00	16.70 54.35 46.02	19.00 31.40 37.35	94.70 43.00	18.90 31.75	69.50	504.35
ZONE MUNICIPALITY	CUMBERLAND COUNTY 68 BRIDGETON 69 COMMERCIAL	70 DEERFIELD 69 DOWNE TOWNSHIP 71 FAIRFIELD	72 GREENWICH 73 HOPEWELL 71 LAWRENCF	74 MAURICE RIVER 75 MILLVILLE 73 SHILON	72 STOW CREEK 76 UPPER DEERFIELD	77 VINELAND	

NE MUNICIPALITY AREA POP EMP POP FMP POP FMP POP FES EMP POP FES EMP POP FES EMP POP FES EMP POP FES FMP FES FMP FES FMP FES FMP FES FES FMP FES											
MUNICIPALITY AREA POP RES EMP POP RES SA SA SA SA SA SA SA SA SA <th></th> <th></th> <th>1 1 1 1</th> <th>- 1980</th> <th>1 1 1 1</th> <th></th> <th>- 1995</th> <th>1 1 1 1</th> <th>1980 - 1</th> <th>995 PERCEN</th> <th>T GROWTH</th>			1 1 1 1	- 1980	1 1 1 1		- 1995	1 1 1 1	1980 - 1	995 PERCEN	T GROWTH
May County Second T 797 900 3,800 1,471 1,331 75.8% 84.6% CAPE MAY 2.502 2,162 797 900 3,800 1,471 1,331 75.8% 84.6% CAPE MAY 0.30 2.502 2,162 797 900 3,800 1,471 1,337 25.5% 51.0% 58.5% 51.0% 58.5% 75.7% 26.6% 55.5% 75.7% 26.6% 55.5% 75.7% 58.5% 75.7% 58.5% 75.7% 58.5% 75.7% 56.6% 57.7% 56.6% 57.7% 51.9% 75.7% 55.5% 75.7% 51.9% 75.7% 51.9% 75.7% 55.5% 75.7% 55.5% 75.7% 55.5% 75.7% 55.9% 75.7% 55.9% 75.7% 55.9% 75.7% 55.9% 75.7% 55.9% 75.7% 55.9% 75.7% 55.9% 56.4.6% 75.7% 55.5% 75.7% 55.9% 56.4.6% 75.7% 55.9% 56.6.0%	E MUNICIPALITY	AREA	POP	RES	EMP	dOd	RES	EMP	dOd	RES	EMP
9 AVALON 5.02 2.162 797 900 3,800 1,471 1,331 75.8% 84.6% 0 CAPE MAY 2.54 4,853 1,105 3,638 5,850 1,399 5,378 20.5% 26.6% 0 CAPE MAY 0.30 2.54 4,853 1,105 3,638 5,850 1,399 5,378 20.5% 26.6% 5855 511.0% 5855 511.0% 5855 511.0% 5855 511.0% 5855 511.0% 5855 511.0% 5855 511.0% 5855 511.0% 5855 511.0% 5855 511.0% 5855 511.0% 5855 511.0% 5855 511.0% <	MAY COUNTY										
CAPE MAY C.254 4, 855 1,105 5,538 5,538 5,539 5,105 5,558 7,105 5,558 7,105 5,558 7,105 5,558 7,105 5,558 7,105 5,558 7,105 5,558 7,105 5,566 6,555 7,103 5,557 7,373 7,373 7,373 7,373 7,373 7,375 7,105 5,362 2,136 2,4,750 8,146 3,158 6,557 737 73	AVALON	5.02	2,162	262	006 -	3,800	1,471	1,331	75.8%	84.6%	47.9%
DENTR 64.97 5,989 1,439 25.57 710 62.55 71.57 71.51 7) САРЕ МАҮ О САРЕ МАУ РОТИТ	2.54	4,855	1, 105 201, 1	5,658 //	1,850 205	1,599	5,5/8 25	20.5% %0.13	20.0% 50.5%	41.8%
Z LOWER TOWNSHIP 29-81 17,105 5,362 2,136 24,750 8,146 3,158 44,77 51,9% 8 MIDDLE TOWNSHIP 74.02 11,373 4,214 4,805 17,850 6,945 7,103 57,0% 54,8% 8 MIDDLE TOWNSHIP 74.02 11,373 4,214 4,805 17,850 6,945 7,103 57,0% 54,8% 7 NORTH WILLWOOD 1.77 513 1,701 21,250 9,101 21,250 6,150 1,923 10,0% 50.0% 54,8% 57.0% 57.0% 56.0% 56.0% 57.0% 56.0% 56.0% 57.0% 50.0% 56.0% 57.0% 50.0% 56.0% 56.0% 57.0% 57.0% 52.3% 60.0% 57.0% 50.0% 57.0% 52.0% 56.0% 56.0% 57.0% 57.0% 57.0% 57.0% 52.0% 56.0% 56.0% 57.0% 52.0% 56.0% 56.0% 56.0% 57.0% 57.0% 57.0% 57.0% 57.0% 57.0%<	DENNIS	05-0 64-97	3,989	1.439	44	600 6.600	2.500	626 626	65.5%	73.7%	46.0%
MIDDLE TOWNSHIP 74.02 11,373 4,214 4,805 17,850 6,945 7,103 57.0% 64.8% NORTH WILEWOOD 1.70 4,714 1,404 721 6,150 1,923 1,066 30.5% 37.0% NORTH WILEWOOD 1.70 4,714 1,404 721 6,150 1,923 1066 30.5% 37.0% SEA ISLE CITY 2.383 13,949 5,758 4,012 21,250 954 79.7% 88.6% SEA ISLE CITY 2.387 137 954 7012 21,250 954 79.7% 88.6% STONE HARBOR 1.24 1,187 4,31 512 1,400 53.4 757 17.9% 757 17.9% 757 76.0% 0.0%	2 LOWER TOWNSHIP	29.81	17,105	5,362	2.136	24,750	8,146	3,158	44.7%	51.9%	47.8%
NORTH WILDWOOD 1.70 4,714 1,404 721 6,150 1,923 1,066 30.5% 37.0% 0CEAN CITY 5.83 13,949 5,758 4,012 21,250 9,210 5,931 50.5% 37.0% 5 Set SLE CITY 2.544 4,51 512 1,470 534 777 88.6% 5 Store Large 1.24 1,187 4,31 512 1,470 534 777 88.6% 5 Store Large 1.24 1,187 4,31 512 1,470 574 777 88.6% 5 UPFER TOWNSHIP 63.70 6,713 2,731 1,380 11,250 4,806 2,040 67.6% 76.0% 0 west CLIDWOOD 0,40 5,77 11,260 1,550 76.0% 75.7 149 42.1% 49.2% 0 west WILDWOOD 1.12 4,913 1,618 3,580 5,800 2,040 67.6% 76.2% 86.2% 0 west WILDWOOD 1.12 4,913 3,56	5 MIDDLE TOWNSHIP	74.02	11,373	4,214	4,805	17,850	6,945	7, 103	57.0%	64.8%	47.8%
COEAN CITY 5.83 13,949 5,758 4,012 21,550 9,210 5,931 52.33 60.03 5 EX ISLE 1.24 187 2,644 958 646 4,750 1,807 954 79.7 88.6% 5 EX ISLE 1.24 1.87 2,644 958 646 4,750 1,807 954 79.7 88.6% 5 EX ISLE 1.24 1,187 2,731 1,380 1,1,250 957 17.9% 23.8% 5 UPPER TOWNSHIP 63.70 6,713 2,731 1,380 101 1,550 5,77 149 42.1% 49.2% WEST CAPE MAY 1.30 1,091 387 101 1,550 5,77 149 42.1% 49.2% WEST MULDMOOD 0.40 3.60 2,040 67.6% 76.0% 49.7% 7 1.33 3.580 580 2,040 67.6% 76.0% 7 1.1,256 580 2,006 5.781 19.1% <td>NORTH WILDWOOD</td> <td>1.70</td> <td>4,714</td> <td>1,404</td> <td>.721</td> <td>6,150</td> <td>1,923</td> <td>1,066</td> <td>30.5%</td> <td>37.0%</td> <td>47.9%</td>	NORTH WILDWOOD	1.70	4,714	1,404	.721	6,150	1,923	1,066	30.5%	37.0%	47.9%
5 SA ISLE CITY 2.39 2,644 958 646 4,750 1,807 954 79.7% 88.6% 5 STONE HARBOR 1.24 1,187 4.31 512 1,400 534 757 17.9% 23.8% 5 STONE HARBOR 1.24 1,187 4.31 512 1,400 534 757 17.9% 23.8% 6 VAT 5.370 6,773 2,731 1,380 11,250 4,806 2,040 67.6% 76.0% 0 WEST CAPE MAY 1.30 1011 11,250 4,806 2,040 67.6% 75.0% 0 WEST WILDWOOD 0.40 360 132 2,580 5,800 2,006 5,292 18.1% 24.0% 7 WILDWOOD 1.112 4,913 1,618 3,580 5,800 2,031 917 41.6% 28.7% 7 WIDWOOD 2.006 5,800 2,031 917 41.6% 28.7% 7 WOODBINE 8.00 2,046 5,800 2,332 19.3% 26.3% 27.2% 25.2% 7 WOODBINE 8.00 2,060<	OCEAN CITY	5.83	13,949	5,758	4,012	21,250	9,210	5,931	52.3%	60.0%	47.8%
STONE HARBOR 1.24 1,187 4.31 512 1,400 534 757 17.9% 23.8% UPEER TOMNSHIP 6.3.70 6,713 2.731 1,380 11,250 4,806 2,040 67.6% 76.0% UPEER TOMNSHIP 6.3.70 6,713 2.731 1,380 11,250 4,806 2,040 67.6% 76.0% USET CAPE MAY 1.30 1,301 132 24 101 1,550 4,806 2,040 67.6% 76.0% WEST WILDWOOD 0.40 3.60 132 24 3,580 5,800 1906 5,292 18.1% 24.0% VILDWOOD 1.12 4,913 1,618 3,580 5,800 2,036 917 41.6% 48.7% VILDWOOD 2.800 2,031 917 41.6% 48.7% VIDDWOOD 2.809 767 1,611 3,350 960 2,382 19.3% VOODBINE 2.033 2.031 21.110 44.653 37.185 47.2% 56.3%	SEA ISLE CITY	2.39	2,644	. 958	646	4,750	1,807	954	79.7%	88.6%	47.7%
UPPER TOWNSHIP 63.70 6,713 2,731 1,380 11,250 4,806 2,040 67.6% 76.0% WEST CAPE MAY 1.30 1,091 3.87 101 1,550 5.77 149 42.1% 49.2% WEST CAPE MAY 0.40 5.71 1,32 5.80 132 2.4 25.1% 14.0 42.1% 49.2% WILDWOOD 0.40 3.56 1,618 3,580 5,800 2,006 5,292 18.1% 24.0% WILDWOOD CREST 1.03 4,149 1,366 6.20 5,875 2,031 917 41.6% 48.7% WOODBINE 2.337 82.266 28.561 25.153 121.110 44.653 37.185 47.2% 56.3%	V STONE HARBOR	1.24	1, 187	431	512	1,400	534	757	17.9%	23.8%	47.9%
U WEST CAPE MAY 1.30 1,091 387 101 1,550 577 149 42.1% 49.2% WEST WILDWOOD 0.40 360 132 24 500 193 36 38.9% 45.8% WILDWOOD 1.12 4,913 1,618 3,580 5,800 2,006 5,292 18.1% 24.0% WILDWOOD CREST 1.03 4,749 1,366 1,611 3,3550 2,003 9,17 41.6% 48.7% WOODBINE 8.00 2,809 767 1,611 3,3550 9,00 2,382 19.3% 25.2% ZEGE 28.561 25.153 121.110 44.653 37.185 47.2% 56.3%	UPPER TOWNSHIP	63.70	6,713	2.731	1.380	11,250	4,806	2,040	67.6%	76.0%	47.8%
V WEST WILDWOOD 0.40 360 132 24 500 193 36 38.9% 45.8% V WILDWOOD 1.12 4,913 1,618 3,580 5,800 2,006 5,292 18.1% 24.0% V WILDWOOD 1.12 4,149 1,366 620 5,875 2,031 917 41.6% 48.7% V WILDWOOD REST 1.03 4,149 1,366 620 5,875 2,031 917 41.6% 48.7% V WOODBINE 8.00 2,809 767 1,611 3,350 960 2,382 19.3% 25.2% 1 WOODBINE 263.37 82.266 28.561 25.153 121.110 44.653 37.185 47.2% 56.3%	D WEST CAPE MAY	1.30	1,091	387	101	1,550	. 577	149	42.1%	49.2%	47.5%
7 WILDWOOD TEST 1.12 4,913 1,618 3,580 5,800 2,006 5,292 18.1% 24.0% 7 WILDWOOD CREST 1.03 4,149 1,366 620 5,875 2,031 917 41.6% 48.7% 1 WOODBINE 8.00 2,809 767 1,611 3,350 960 2,382 19.3% 25.2% 2.332 19.3% 25.2% 25.3\% 25.3\% 25.	MEST WILDWOOD	0*0	360	132	24	200	193	36	38.9%	45.8%	50.0%
7 WILDWOOD CREST 1.03 4,149 1,366 620 5,875 2,031 917 41.6% 48.7% WOODBINE 8.00 2,809 767 1,611 3,350 960 2,382 19.3% 25.2% CODBINE 263.37 82.266 28.561 25.153 121.110 44.653 37.185 47.2% 56.3%	VILDWOOD	1.12	4,913	1,618	3,580	5,800	2,006	5,292	18.1%	24.0%	47.8%
l WOODBINE 8.00 2,382 19.3% 25.2% 	7 WILDWOOD CREST	1.03	4,149	1,366	620	5,875	2,031	917	41.6%	48.7%	42.9%
263.37 82.266 28.561 25.153 121.110 44.653 37.185 47.2% 56.3%	WOODBINE	8.00	2,809	767	1,611	3,350	. 960	2,382	19.3%	25.2%	47.9%
263.37 82.266 28.561 25.153 121.110 44.653 37.185 47.2% 56.3%						1 1 1 1 1					
		263.37	82.266	28.561	25.153	121.110	44.653	37.185	47.2%	56.3%	47.8%

			- 1980 -		, , , ,	- 1995		1980 - 19	995 PERCEN	T GROWTH
ZONE MUNICIPALITY	AREA	dOd	RES	EMP	dOd	RES	EMP	дод	RES	EMP
OCEAN COUNTY										
113 BARNEGAT TWP 105 BARNEGAT LIGHT	34.90 0.70	8, 702 619	3 , 058 233	308 353	15,225 925	5,618 366	946 410	75.0%	83.7% 56.9%	207.6% 16.0%
107 BAY HEAD 105 BEACH HAVEN	0.60	1, 340	585 593	1,170	1,700 2,400	872 872	1,711	26.9% 40.0%	33.2% 47.0%	46.2%
106 BEACHWOOD 106 RERKFLFY	2.80 41 90	7,687	3,100 5,760	649 1 708	8,750 42,000	3,705 10,072	1,061 2,761	13.8% 81.4%	19.5% 90.5%	63.4% 53.6%
107 BRICK	26.40	53,629	20,917	8,622 23,622	72,500	29,691	13,970	35.2%	41.9%	62.0%
115 EAGLESWOOD	16.50	1,009	389	211 211	2,500	1,012	229	147.8%	160.2%	8.8%
105 HARVEY CEDARS 108 ISLAND HEIGHTS	0.55	363	151 653	144 01	500 1 825	218	138	37.7%	44.6%	-4.3%
110 JACKSON	100.30	25,644	669,6	5,049	45,500	18,069	7,221	27.4%	86.3%	43.0%
112 LACEY 109 LAKEHURST	84.6U 0.95	14, 161	4,550	1,022	25,550 3,550	1,325	4,432 1,378	61.7% 22.1%	76.1% 28.2%	34.8%
111 LAKEWOOD	24.40 0.45	38,464	12,068	12,902	50,500	16,636	21,299	31.3%	37.9%	65.1% 100.6%
115 LITTLE EGG HARBOR	49.50	8,483	2,783	235	14,350	4,943	530	69.2%	22.02	125.7%
0 105 LONG BEACH TWP	4.50 82.50	5,488 27,987	1,199	845	6,250 49,500	2,256 8,192	1,445 2,811	76.9%	88.1% 85.7%	/1.5% 87.5%
107 MANTOLOKING	0.44	433	189	116	525	241	168	21.2%	27.3%	74. 7%
115 UCEAN IMP 106 OCEAN GATE	20.62 0.50	5,751 1.385	1, 18/	555 38 38	9,150 1,600	5,012 627	555 89	145.5%	21.3%	-0.1% 132.5%
106 PINE BEACH	0.60	1, 796	732	256	2,300	984	444	28.1%	34.5%	73.1%
107 POINT PLEASANT	3.70	272,21	7,278	4,433	21,350	9, 193	7,352	20.3%	26.3%	62.9%
107 POINT PLEASANT BCH 108 SEASIDE HEIGHTS	1.50	5,415	2,340 673	2,335	6,550 2,050	2,972 807	3,705	21.0%	27.0%	58.7%
108 SEASIDE PARK	0.60	1,795	670	778	2,600	1,021	2,182	44.8%	52.1%	180.3%
105 SHIP BOTTOM 106 SOUTH TOMS RIVER	0.71	1,427	558 1 375	812 338	2,000 4,000	821	1,027	40.2% 1 2%	47.2% 6.2%	26.6% 310.2%
114 STAFFORD	47.05	10,385	3,832	2,824	23, 750	9,202	4,766	128.7%	140.1%	68.8%
115 TUCKERTON	3.70	2,472	922	736	3,250	1,071	1,742	31.5%	38.0%	136.6%
	637.09	346,038	119,996	76,004	515,750	184,439	123,702	49.0%	53.7%	62.8%
INTERNAL ZONE TOTALS	3915.37	2,161,966	888,872	816,348	2,656,585 1	,140,256 1	1,164,142	22.9%	28.3%	42.6%

III. WORK TRIP ESTIMATION

Once the basic data of persons and jobs have been estimated, the next step involves estimating the number of trips each area will generate and how many of those trips will go to each of the other areas. These tasks are generally referred to as "trip generation" and "trip distribution".

DVRPC has done extensive research into the trip making characteristics of its resident population and has developed a series of models to describe this behavior. These models require a very detailed level of data and a mathematical representation of the transportation network.

The resources needed to develop the level of data required by the DVRPC models for the entire South Jersey Transit Plan Study area are too extensive. Therefore, a simplified version of these models was developed that embodies many of the same concepts but which takes advantage of the focus of the study: determining transit potential.

Area Types

The DVRPC approach to work trip generation, referred to as a disaggregate trip model, is to apply trip production and attraction rates based on area types to the estimated number of employed residents or employees in an analysis zone. The area type of a zone is defined by the density of "activity" in that zone. The density function is a weighted combination of population and employment per acre.

DVRPC assigns area type codes, from 1 to 6, to ranges of densities. For instance, a zone in the Philadelphia Central Business District might have a density value of 413.00 and would be assigned an area type code of 1. A zone in the Pinelands might have a density value of 0.02 and would be assigned an area type code of 6.

For the South Jersey study, DVRPC found that the DVRPC area type model did not adequately differentiate the zones. Instead, a better stratification was derived by using employment density as an area type descriptor. Ranges were established for six area types, yielding area types for each zone. For example, Trenton is Area Type 1, Camden is 2, Woodbury is 3, Lakewood is 4, Evesham is 5 and Upper Township is Area Type 6.

Trip Productions and Attractions

Trip production rates for an area type are determined by dividing the total number of trips for a given purpose produced in the area by the total of an appropriate base data element related to trip making. In the case of commuter trips, the total number of work trips made by the residents of all the zones in an area type would be divided by the total number of employed residents in those zones.

Trip attraction rates for an area type are similarly determined by dividing the number of trips attracted to an area by the appropriate base data element. In the case of commuter trips, the total number of work trips made to an area by the employees would be divided by the total number of employees in the area.

With both trip productions and attractions, only trips made on vehicular modes are counted (walk, taxi, school bus, bicycle, motorcycle trips are not included). Therefore, trip rates are always less than 1.00. Rates will be lowest where residents can walk or taxi to a vast number of jobs, typically in the most dense areas.

Using the 1980 Census Journey-to-Work data, the South Jersey zones were classified by area type and the production and attraction rates determined. The resulting work trip production rates (trips per employed resident) ranged from 0.876 for the Philadelphia CBD to 0.931 in the Pine Barrens, while the work trip attraction rates (trips per employee) ranged from 0.780 for the City of Camden to 0.985 around Woodstown.

Trip Distribution

The process of connecting the trips produced in one zone with the trips attracted to another zone is called the trip distribution analysis. The theory most often applied to this process is a variation of the gravity model from the physical sciences. Simply stated, the magnitude of the force between two zones (trips) is directly related to the product of their masses (productions and attractions) and inversely proportional to the physical separation between them (impedance to travel) raised to some power.

In the application of this principle to travel flow theory, the impedance to travel is often represented by the time it takes to travel between two zones. The combined effect of raising the inverse of the travel time to a power is treated by the creation of a value called the "friction factor". These factors, which represent the propensity to travel, are determined for each one minute increment of travel time from studies of the travel behavior of the trip makers of an area. DVRPC has calibrated a set of friction factors for its region which were used in this study.

In the DVRPC modelling process, travel time between two zones is determined by summing the time it takes to traverse the links of the minimum impedance path across a transportation network. To perform this task requires a mathematical network representing the transportation facilities available in the study area. The development of such a network is costly and time consuming.

Instead, a simplified method was devised to calculate the travel time between pairs of zones based on the straight line distance between them. To account for travellers being able to use higher speed facilities over a greater proportion of a long trip, the model employs a speed-by-distance look-up table which was partly derived from the Census data. Short trips are assumed to be made at relatively slow average speeds since a great proportion of such trips are made over local streets. Intermediate length trips are assumed to be made at a slightly higher speeds since they can generally use some of the higher speed facilities, while the longest trips have the highest average speeds since they can use higher speed facilities for proportionately more of the trip.

For the South Jersey Plan Study, DVRPC developed a microcomputer program called "AGMCD" which combines the tasks of trip generation and trip distribution (including the calculation of travel impedance). The program allows the analyst to specify trip production and attraction rates by area type, the year of the analysis and other application specific parameters. The output of the program includes a file of zone-to-zone work trips, a file of zone-to-zone travel impedances (optional) and a series of reports summarizing the input data, resulting trip origins and destinations, trip length frequencies, and a county-to-county trip summary. The program can also provide a report of the number of trips and the calculated impedances from any selected zone to all other zones. Figure 8 is a flow chart showing the inputs and outputs of the "AGMCD" program.

Initial development and testing of the simplified model concepts were done using the data from the DVRPC regional simulation process. The magnitude of productions and attractions and the trip length frequency distribution resulting from the simplified model were compared with those from the DVRPC models. The DVRPC regional travel model data sets, which are based on census tracts as zones, had to be aggregated to the MCD level to be consistent with the ultimate application of the model in the South Jersey study.

Once the simplified model concepts were finalized, data sets were constructed for the South Jersey study zones. Figure 9 is a listing of input zonal data used in the AGMCD model. Calibration data sets were also assembled from the 1980 Census Journey-to-Work files. Adjustments were made to the impedances calculated by the model. These adjustments took into account the additional aid to travel provided by the PATCO line and the Atlantic City Expressway. The AGMCD program was calibrated to the Census data with very reasonable results.

Figure 10 presents the County-to-County trip table summaries from the calibration effort. The upper table is the output of the AGMCD simplified model while the lower table is the summary of the Census Journey-to-Work survey.

Figure 9 Input Data to the Travel Market Model

				1980 Data	a		1995 Dat	a		
	Zone			Emp			Emp		L	ocation
Zone Name	No.	Area	Рор	Res	Emp	Рор	Res	Emp	х	Y
ABSECON	1	5.70	6859	3203	2293	7877	3862	3390	57.8	35.0
ATLANTIC CITY	2	11.84	40199	15257	36424	46641	18587	90830	60.9	30.8
BRIGANTINE	3	6.39	8318	3907	961	14798	7298	1420	64.7	34.1
BUENA AREA	4	49.23	10601	4407	2302	11018	4811	3403	35.6	41.6
EGG HARBOR TWP	5	67.94	19381	8573	7308	28000	13005	10803	51.8	32.6
WEYMTH-CORB-ESTEL1	6	74.05	2362	955	312	2870	1223	461	42.2	31.7
GALLOWAY-PT REP	7	99.85	13089	6016	4229	26370	12707	6252	57.5	40.8
HAMILTON	8	113.40	9499	4236	3068	18795	8801	5368	44.5	40.0
HAMMONTON - FOL SOM	õ	50 20	14100	6073	7230	15237	6847	10388	42 1	50 0
	10	3 80	6144	2790	2782	6605	3149	4113	53 7	29.5
	11	67 30	0861	3768	1167	1008/	6605	1726	49.6	46.0
	12	3 50	7705	3700	7/2/	7967	3755	5062	5/ 6	40.0 71 5
	17	5.00	17/75	5799	9227	17/70	3755	12142	54.0	77 0
PLEASANIVILLE	17	2.80	10770	2200	2022	1/4/9	F174	/720	52.0	27.0
SUMERS PI	14	4.00	10330	4023	2722	2/0/5	12057	4320	52.0	27.0
VENT-MAR-LONG	15	5.80	22152	10176	5748	24945	12055	220	5/.5	28.9
BASS RV-WASH	16	184.67	2152	754	261	2620	962	415	50.4	52.0
BEV-EDGWATER PK	17	3.40	12192	5770	2522	12780	6365	3730	34.9	78.6
FIELD-BORDEN AREA	18	8.65	12208	5749	6182	13650	6764	9280	45.7	84.1
BURLINGTON AREA	19	17.64	21773	9392	12496	23925	10852	17345	38.6	79.6
CINNAMINSON	20	7.57	16072	7552	6266	16345	8064	9110	30.8	74.0
DELRAN	21	6.91	14803	7028	3243	16215	8083	5135	33.1	75.3
EVESHAM	22	29.65	21543	10317	4559	35240	17720	9020	36.0	65.3
FLORENCE	23	9.65	9115	4206	4541	10175	4930	6125	41.6	81.2
HAINES-LUMBERTON	24	19.92	8472	3998	2830	9950	4934	4210	40.1	72.2
MANS-SPRING-CHEST	25	74.24	9050	3407	1993	11765	4682	2585	46.7	80.0
MAPLE SHADE	26	3.72	20525	10340	5701	20515	10852	8485	30.8	71.0
MEDFORD AREA	27	41.54	22580	9867	4575	30715	14038	8350	40.3	64.9
MOORESTOWN	28	15.18	15604	6634	13978	17460	7794	20525	33.8	73.2
MT HOLLY-E-W AMPTN	29	19.58	18015	8090	8761	22435	10768	11845	41.4	75.1
MT LAUREL	30	22.15	17614	8115	5920	29780	14406	10250	35.4	71.0
NEW-NO HAN-WRIGSTN	31	40.88	26296	17003	17000	31095	21068	25424	52.6	77.4
PALMYRA-RIVERTON	32	2.62	10153	4850	3802	11045	5542	5445	29.1	75.0
PEMBERTON AREA	33	65.43	30918	12183	2727	36825	15226	4035	49.4	72.1
RIVERSIDE-DELANCO	34	3 70	11671	5263	4842	11890	5630	6460	33.2	77 8
SHAMONG	35	46 61	4537	1801	666	6390	2796	1090	45 0	59 0
SOUTHAMPTON	35	/3 31	8808	2000	816	11210	6008	1150	45.0	68 6
	30	43.31	6276	2500	422	8200	3/00	760	40.6	42.2
	70	7 60	70012	17/0/	7217	6290	18/0/	0285	47.4	76 7
	20	05 29	27712	/72	/51	40185	/04	720J 540	54.5	47 4
	29	2.30	15070	472	401	15095	470	500	26.2	47.2
AUDUBUN-PR-UARLIN	40	2.20	15032	7105	2023	15065	7/ 77	5025	20.0	44 0
BARKINGTON-HAD HIS	41	5.17	15779	12042	4100	12700	1923	0015	27.5	45 0
BELMWRTMI EPHTRONN	42	2.09	28045	12002	/200	20125	12/01	9015	23.9	65.0
BERLIN AREA	45	0.65	11154	4421	4004	13495	2009	6780	24.2	70.1
	44	8.68	84910	22385	42812	83545	23333	48930	24.7	/0.1
CHERRY HILL	45	24.18	68785	31439	38221	78325	37589	52345	30.4	68.4
CLEMENTON-PINE HILL	46	5.88	14452	6060	2434	16870	7426	3480	31.5	60.4
COLLNGSWD-WDLYN	47	2.08	18416	8002	4801	18510	8444	6745	26.3	68.8
GLOUC CITY-BRKLWN	48	2.81	15252	5685	5132	15445	6042	6670	24.2	66.9
GLOUCESTER TWP	49	23.14	45156	20040	8754	57505	26796	15420	28.5	60.1
HADDONFIELD-TAV	50	2.78	12340	5452	5178	12425	5764	7065	28.6	67.4
HADDON TWP	51	2.60	15875	7007	3306	16335	7571	4170	27.5	68.1
LAWNSIDE-MAGNOLIA	52	2.41	7923	3639	1744	8235	3962	2450	28.9	65.1
LINDENWD-LAUREL SP	53	4.27	20445	10276	3008	22150	11695	4965	31.0	62.2
PENNSKN-MERCHANTVL	54	11.17	37733	16491	31351	39350	18058	38960	27.7	72.0
SOMERDL-STRATFD-HI	55	3.18	15155	6768	4279	15790	7405	6355	29.6	63.3
VOORHEES-GIBBSBORO	56	13.77	15429	7729	7176	29250	15496	13555	33.0	63.6

Figure 9 Input Data to the Travel Market Model (continued)

				1980 Dat	a		1995 Dat	a		
	Zone			Emp			Emp		L	ocation
Zone Name	No.	Area	Рор	Res	Emp	Рор	Res	Emp	Х	Ŷ
WATERFORD	57	36.11	8126	3038	2472	12625	4956	4580	40.1	57.0
WINSLOW-CHESTILHST	58	59.50	21624	8111	3599	31825	12550	7140	35.7	54.5
AVALON-STONE HARBR	59	6.26	3349	1228	1412	5200	2005	2088	44.5	11.4
CAPE MAY AREA	60	4.14	6199	1584	3783	7785	2122	5592	34.9	1.8
DENNIS-WOODBINE	61	72.97	6798	2206	2034	9950	3460	3008	40.6	19.9
LOWER TWP	62	29.81	17105	5362	2136	24750	8146	3158	35.7	4.8
MIDDLE TWP	63	74.02	11373	4214	4805	17850	6945	7103	39.5	12.0
OCEAN CITY	64	5.83	13949	5758	4012	21250	9210	5931	51.9	23.7
SEA ISLE CITY	65	2.39	2644	958	646	4750	1807	954	47.4	17.0
UPPER TWP	66	63.70	6713	2731	1380	11250	4806	2040	46.5	23.5
WILDWOODS AREA	67	4.25	14136	4520	4945	18325	6152	7311	40.2	4.8
BRIDGETON	68	6.50	18795	6999	11863	19200	7507	12600	18.0	35.0
COMMERCIAL -DOWNE	69	88 35	6477	2250	865	7140	2603	874	25 2	24.8
DEEREIELD	70	16 70	2523	985	457	2900	1189	462	23 4	37 1
FAIRFIELD-LAWRENCE	71	83 37	7809	2952	777	8858	3515	1137	18 7	30 1
GREENWICH-STOWE	72	37 00	2338	088	257	2/80	1101	261	10.7	34.6
HOPEVELL-SHILOH	73	32 58	6081	2166	338	5420	2474	3/2	15 1	36 1
	74	94 70	4577	1442	1528	6186	2046	1700	33.0	26.4
MILLVILLE	75	43 00	2/815	10745	12705	20300	13321	13800	27 /	32 6
	76	31 75	6810	2031	055	8300	3751	1060	18 7	30.0
VINELAND	77	69 50	53753	21/08	255/5	64500	26073	27600	20.8	38.0
	78	7 26	6013	21400	1402	6750	2559	2135	26.2	51 3
DEPTEORD-VENONAH	70	18 57	25776	10873	01/2	28660	12500	13005	24 1	61.8
EAST GREENWICH	80	16.57	/1//	1503	1111	4000	2016	1/.05	17 0	60.3
FIR	81	10 60	3166	1076	152	4770	1572	315	22.6	51 3
EDANKI IN-NEUETELD	82	58 18	13050	5/72	2710	18020	7750	3705	20.5	46.0
	87	0 37	1/57/	601/	6376	16100	6076	8005	24.0	5/ 1
	84	10 08	3574	1556	858	/335	1008	1310	10 6	55 7
	85	27 / 2	2079	1370	1440	4335	2227	3100	17.0	40.7
MANTUA	84	15 04	0107	7771	7550	10705	1611	5740	21 5	50.3
MONDOE	97	13.90	21470	0770	2400	24000	4011	5500	21.5	50.5
	01	40.90	21039	0120	2020	20900	11393	9155	32.5	21.5
DITMAN	20	2 24	07//	4940	7/77	0/20	4942	2000	12.9	54 7
	09	2.20	7144	4010	2472	9420	4077	2000	17 7	56.2
	90	15 47	15/9	421	2004	20/0	950	4005	15.7	57.4
	02	21 45	1340	11670	77	2040	17600	5510	24 9	57.0
WASHINGTON	92	21.00	21010	11650	2402	40180	117000	2070	20.0	57.0
W DEPTFORD-NAT PK	93	1 21	21554	9455	4237	24405	10/4	7070	20.9	45 7
	94	7 74	4700	5590	070/	4520	5724	11525	2J.0 22 Z	42.9
	95	3.30	13013	14054	9394	74050	2720	77005	22.3	02.0
	90	70 70	02001	10000	29452	36050	10312	21075	40.9	92.9
HICTSTUNE UINDSOD	97	14 97	02001	40904	2004	20150	40/01	31975	47.J	07.1
	90	10.03	25022	7777	F1/F	29130	95 70	7515	/1 2	92.0 00 E
PENNGIN-HUPEWELLS	99	29.74	15005	1313	2142	10010	8570	7515	41.2	98.5
LAWKENLE	100	21.87	19724	9674	14887	25945	15561	25515	45.0	94.5
PRINCEION AREA	101	18.01	25718	12598	21900	29105	14969	28095	48.0	98.5
	102	7.50	92124	33211	63765	92295	34936	69040	42.7	90.0
	103	20.70	5487	1726	851	6950	3612	2740	52.2	89.5
WEST WINDSOR	104	20.84	8542	4240	7102	15990	8354	20300	49.8	94.9
LONG BUH ISLAND	105	7.91	9182	5502	3688	13900	5226	5468	(3.5	51.0
BERKELEY AREA	106	47.00	51915	11484	5080	58650	17749	5742	74.8	68.8
BRICK AREA	107	52.64	78564	51509	15787	102625	42876	25687	79.3	/9.9
DOVER AREA	108	45.82	71699	28054	25787	89050	36579	40346	15.3	73.0
MANCHESTER AREA	109	83.45	30895	5445	2521	53050	9517	4189	65.3	73.4
JACKSON	110	100.30	25644	9699	5049	45500	18069	7221	65.0	82.0
LAKEWOOD	111	24.40	58464	12068	12902	50500	16636	21299	72.5	81.0
LACY	112	84.60	14161	4530	1991	23750	(977	4432	15.0	64.0

Figure 9 Input Data to the Travel Market Model (continued)

				1980 Dat	a		1995 Dat	a		
	Zone			Emp			Emp		L	ocation.
Zone Name	No.	Area	Рор	Res	Emp	Рор	Res	Emp	Х	Y
BARNEGAT-OCEAN	113	55.52	12433	4245	841	24375	8674	1479	72.1	57.9
STAFFORD	114	47.05	10385	3832	2824	23750	9202	4766	69.6	54.5
LITTLE EGG AREA	115	69.70	11964	3948	1182	20100	7026	2501	66.3	49.2
PLUMSTED	116	40.70	4674	2080	353	10500	4906	572	57.8	77.3
ALLOWAY	117	34.35	2680	1022	340	2837	1136	348	13.2	44.5
ELMER-PITTSGROVE	118	47.39	8523	3456	1700	10232	4347	1738	23.3	43.0
LOWER ALLOWAYS CR	119	47.70	1547	622	2022	1613	681	2067	6.1	37.8
MANNINGTON	120	38.10	1784	614	596	1889	683	610	7.7	48.4
OLDMANS	121	20.08	1847	713	868	1955	792	888	8.3	56.6
PENNSGROVE-CARNEYS	122	18.80	14144	5280	2514	14318	5651	2572	6.1	53.8
PENNSVILLE	123	24.40	13804	5452	7630	14116	5854	7801	2.8	48.8
QUINTON	124	25.30	2887	1199	230	3056	1333	235	9.6	42.1
SALEM-ELSINBORO	125	15.70	8249	3025	7845	8734	3363	8023	3.6	43.0
UPPER PITTSGROVE	126	40.10	3139	1383	421	3932	1819	430	19.1	47.9
WOODSTOWN-PILESGRV	127	38.96	6060	2549	1674	6718	2976	1714	13.3	51.0
<u>External Zones *</u>										
NJ NORTHERN TIER	130	0.00	0	5302	13571	0	5461	16421	75.0	128.0
WARREN/HUNTERDON	131	0.00	0	2946	854	0	3388	1196	33.0	118.0
SOMERSET/MIDDLESEX	132	0.00	0	11074	16669	0	12957	22336	59.0	107.0
MONMOUTH	133	0.00	0	9991	19193	0	11290	27254	74.0	95.0
NY CITY	134	0.00	0	1484	9474	0	1484	9474	85.0	130.0
NY STATE	135	0.00	0	67	382	0	67	382	92.0	154.0
CONNECTICUTT ST	136	0.00	0	0	244	0	0	244	115.0	154.0
DELAWARE STATE	137	0.00	0	2644	3471	0	3173	4165	-2.0	53.0
PA STATE	138	0.00	0	61	970	0	61	970	-15.0	120.0
UNITED STATES	139	0.00	0	188	3523	0	188	3523	-30.0	35.0
BUCKS COUNTY	140	0.00	0	19242	8526	0	23860	12107	36.5	85.5
CHESTER COUNTY	141	0.00	0	885	677	0	1053	948	0.0	79.0
DELAWARE COUNTY	142	0.00	0	3415	5109	0	3517	5978	12.0	67.0
MONTGOMERY COUNTY	143	0.00	0	2924	5029	0	3216	7041	20.0	83.5
<u>Philadelphia *</u>										
PHILA CBD	145	2.52	0	558	30471	0	541	32604	22.2	71.3
LOWER NE PHILA	146	27.88	0	3193	6484	0	3065	6549	25.7	75.3
UPPER NE PHILA	147	27.50	0	1595	2301	0	1531	2669	29.5	79.5
N/NW & W PHILA	148	58.29	0	4028	16632	0	3867	16632	20.0	73.2
W & SW PHILA	149	28.00	0	1984	12384	0	1905	12756	19.0	68.0

<u>* Note:</u> For the external zones, employed residents and employment are actually the predetermined productions and attractions.

Figure 10 Comparison of Estimated and Census Work Trips - 1980

		1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL
BURL	1	82299	22958	1411	10659	1178	18	216	1155	299	8107	9904	7941	4322	150467
CAMDEN	2	13871	104030	8752	1100	2481	91	811	221	986	16836	20578	7272	2016	1 79 045
GLOU	3	1895	15655	36152	199	1632	89	2826	45	2640	5404	6602	3 568	546	77253
MERCER	4	2300	361	56	100616	90	0	14	282	14	413	507	4010	16507	125170
ATLANTIC	5	510	1630	604	120	61694	1572	2522	384	222	531	654	715	351	71509
CAPE MAY	6	66	243	96	33	4111	18642	593	11	77	299	367	411	325	25274
CUMB	7	65	526	983	67	2142	336	40411	27	1732	115	142	352	72	46970
OCEAN	8	1665	336	49	2645	2223	126	99	66160	45	220	265	9 20	36207	110960
SALEM	9	131	464	1735	63	201	31	2205	19	15312	140	173	2310	41	22825
CBD	10	115	362	42	45	18	6	3	10	11	0	0	0	0	612
PHILA	11	2188	6873	796	860	341	112	61	196	202	0	0	0	0	11629
PA SUB	12	3137	5651	1536	16150	390	181	241	211	2096	0	0	0	0	29593
No. JER	13	1231	662	632	18518	711	190	1076	7730	114	0	0	0	0	30864
TOTAL		109473	159751	52844	151075	77212	21394	51078	76451	23750	32065	39192	27499	60387	882171

PART A - 1980 CENSUS DISTRICT-TO-DISTRICT TRIP TABLE SUMMARY

PART B - 1980 AGMCD MODEL DISTRICT-TO-DISTRICT TRIP TABLE SUMMARY

		1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL
BURL	1	80975	23876	1623	12698	1339	41	336	1055	291	5460	9134	7584	7550	151962
CAMDEN	2	12203	100513	13011	1484	1782	50	874	113	725	18487	17396	5184	1724	173546
GLOU	3	1529	14112	34142	487	1429	66	3115	54	2103	489 3	8004	4670	632	75236
MERCER	4	3637	470	63	100633	56	0	33	278	32	389	806	3203	15060	124660
ATLANTIC	5	707	1331	817	425	63948	1502	3465	309	335	497	833	664	628	75461
CAPE MAY	6	45	106	61	18	3487	21129	804	19	105	79	117	123	51	26144
CUMB	7	155	484	937	146	1294	432	39673	22	2637	318	561	2080	66	48805
OCEAN	8	2838	706	217	3263	2326	79	230	61578	71	650	1073	950	35541	109522
SALEM	9	73	426	1507	86	146	20	1897	3	14787	372	705	3317	30	23369
CBD	10	55	408	60	21	2	0	4	0	8	0	0	0	0	558
PHILA	11	1857	6366	1273	870	88	5	89	36	205	0	0	0	0	10789
PA SUB	12	5495	4298	2163	13709	174	13	353	152	2987	0	0	0	0	29344
No. JER	13	2344	1088	212	21790	185	0	14	5192	10	0	0	0	0	30835
TOTAL		111913	154184	56086	155630	76256	23337	50887	68811	24296	31145	38629	27775	61282	880231

Travel Projections

To project the number of work trips that will be made on an average weekday in 1995 is the next step in the process. The 1995 population, employed residents and employment data gathered and agreed upon by the counties was submitted to the AGMCD travel simulation model. The results of this process were the zone-to-zone work trip estimates for 1995.

For 1995, the AGMCD model was run using the same parameters and impedance table as had been used for 1980. Doing this permitted the isolation of the effects of growth in population and jobs. However, there were some differences between the 1980 and 1995 runs. Most importantly, since the model dynamically determines the future area type of each zone based on the projected densities, some zones "moved" from one area type classification to another (ie, from rural to suburban). The result of this re-classification meant that trips would be produced and attracted at different rates than they were in the base year 1980.

Figure 11 shows the results of the 1995 simulation of work trip travel on a county-to-county basis (Part A). Also shown are the amount and percentage change in trip movements (Parts B and C, respectively). The model predicted a total growth in home to work trips for the study area of more than 237,000 trips. The growth in trip origins from a county (row totals) reflects the growth in population, while the growth in trip destinations to a county (column totals) reflects the growth in jobs.

The largest increases in work trip travel (home to work) can be identified in Part B of the figure. In all cases, except Cumberland and Salem Counties, the largest gains will be in intra-county travel. This follows the normal pattern where most county residents work within their home county. However, in the case of Cumberland and Salem Counties, the pattern is much different. Cumberland will experience less growth in intra-county trips and, in fact, will see more new trips being made to Atlantic County than new trips to the "home" county. Salem County will actually experience a very slight decrease in intra-county work trips, with all of its work trip growth being distributed to every one of the other areas except Cumberland County. In both cases, the cause of this variance from the normal pattern is the lack of growth in jobs within the county.

The largest increases in inter-county work trip travel will occur between the following county pairs:

Ocean to Atlantic	8,000
Burlington to Camden	6,900
Cape May to Atlantic	6,800
Gloucester to Camden	5,600
Camden to Burlington	4,900
Cumberland to Atlantic	3,500
Camden to Gloucester	3,300
Ocean to Burlington	2,600
Ocean to Mercer	2,500

Atlantic County appears as a destination three times in this list, drawing large numbers of new workers from Ocean, Cape May and Cumberland counties. Ocean County also appears as an origin three times, sending its new residents to work in Burlington and Mercer counties, in addition to Atlantic County. Also to be noted is the exchange of workers between the Camden, Gloucester and Burlington counties as both employment and population expand in these counties.

Two other pairings will experience considerable growth in work trip travel. More than 10,000 new workers living in Ocean County will commute to the counties north of them by 1995. This represents the largest single inter-county cell in the growth matrix, but must be viewed with the understanding that this destination represents all of northern New Jersey, including numerous dense counties near Ocean County. The other significant pairing is between the North Jersey counties and Mercer County. Two-thirds of the growth in work trips from the northern counties into the study area (over 2500 trips) will be destined to Mercer County.

Figure 11 1995 Estimated Trips and Trip Growth

PART A - 1995 AGMCD MODEL DISTRICT-TO-DISTRICT TRIP TABLE SUMMARY

		1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL
BURL	1	106129	30765	2153	14454	3486	51	218	1251	190	5392	8500	9103	7912	189604
CAMDEN	2	17101	124324	16299	1683	5092	68	570	144	484	17592	15653	5676	1898	206584
GLOU	3	2288	19742	44742	623	3278	85	2430	82	1653	5098	7747	4888	738	93394
MERCER	4	4803	592	86	121522	207	1	18	332	19	395	779	4029	15820	148603
ATLANTIC	5	620	1359	793	304	94965	1063	1917	202	149	312	494	484	378	103040
CAPE MAY	6	76	159	102	18	10324	20141	637	25	93	77	110	134	57	40953
	7	408	1153	1989	200	4749	794	42883	55	2907	554	909	2794	108	59602
OCEAN	8	5478	1227	378	5801	10278	138	196	95519	63	893	1373	1618	45703	168665
SALEM	õ	179	796	2799	150	541	36	1779	0	14665	528	927	3998	43	26450
CBD	10	59	387	61	18	6	0	1	, n	3	0	20	0		535
	11	1958	5961	1281	762	203	7	41	35	109	ñ	ň	ñ	ñ	10357
PA SUR	12	7524	5166	2772	15020	464	10	245	185	27/3	n n	n	n n	n N	35038
No IEP	17	2660	1271	2/12	2/336	404	1	245	5450	2/45	0	0	0	0	3/606
NO. ULK	1.5	2000	1251	243	24330	477		,	000	5	0	0	0	Ū	34000
TOTAL		149283	192862	73698	185890	134070	31404	50940	103489	23081	30841	36492	32724	72670	1117431
PART B -	198	30 то 1	995 EST	IMATED	GROWTH	IN DIST	RICT-TO	D-DISTR	ICT TRI	s					
		1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL
BURL	1	25154	6889	530	1756	2147	10	- 118	196	-101	-68	-634	1519	362	37642
CAMDEN	ż	4898	23811	3288	199	3310	18	-304	31	-241	-895	-1743	492	174	33038
GLOU	3	759	5630	10600	136	1849	19	-685	28	-450	205	-257	218	106	18158
MERCER	4	1166	122	23	20889	151	1	-15	54	-13	6	-27	826	760	23943
ATLANTIC	5	-87	28	-24	-121	31017	-439	- 1548	-107	- 186	- 185	-339	-180	-250	27579
CAPE MAY	6	31	53	41	0	6837	8012	-167	6	-12	-2	-7	11	6	14809
CUMB	7	253	669	1052	153	3455	362	3210	33	270	236	348	714	42	10797
OCEAN	8	2640	521	161	2538	7952	59	-34	33941	-8	243	300	668	10162	59143
SALEM	9	106	370	1292	64	395	16	-118	6	-122	156	222	681	13	3081
CBD	10	4	-21	1	-3	4	0	-3	0	-5	0	0	0	0	-23
PHILA	11	101	-405	8	-108	115	2	-48	-1	-96	0	0	0	0	-432
PA SUB	12	2029	868	609	2211	290	6	-108	33	-244	0	0	0	0	5694
No. JER	13	316	143	31	2546	292	1	-9	458	-7	0	0	0	0	3771
TOTAL		77770	70/70	17(1)	70260	5701/	90/7	57	7//70	1015	70/	2177	1010	11700	277200
TUTAL		51510	20010	17012	20200	57614	6007	22	34070	-1215	-304	-2157	4949	11200	237200
PART C -	10	RN TN 1	005 DEP	CENTAGE	CROUTH		TPICT-	10-0151	DICT TD	IDS					
<u>- //// 0</u>		50 10 1	<u>,,,,,,,</u>	<u>orningr</u>		11 010		10 0101		110					
		1	2	3	4	5	6	7	8	9	10	11	12	13	TOTAL
BURI	1	31%	29%	33%	14%	160%	24%	-35%	19%	-35%	- 1%	-7%	20%	5%	25%
CAMDEN	2	40%	24%	25%	13%	186%	36%	-35%	27%	-33%	-5%	- 10%	9%	10%	19%
	3	50%	40%	31%	28%	129%	29%	-22%	52%	-21%	4%	-3%	5%	17%	24%
MERCER	4	32%	26%	37%	21%	270%	0%	-45%	19%	-41%	2%	-3%	26%	5%	19%
ATLANTIC	5	-12%	2%	-3%	-28%	49%	- 29%	-45%	-35%	-56%	-37%	-41%	-27%	-40%	37%
CAPE MAY	6	69%	50%	67%	0%	196%	38%	-21%	32%	-11%	-3%	-6%	9%	12%	57%
	7	163%	178%	1129	105%	267%	90% 8/.%	8%	150%	10%	769	62%	349	64%	22%
OCEAN	י פ	07%	7/.9	7/.9	79%	3/.0%	75%	- 15%	55%	-11%	77%	28%	70%	20%	51.9
SALEM	0	1/5%	27%	14/0 869	7.9	2719	2/2 I	- 69	200%	- 1%	4.2%	Z0%	21%	63%	ンチル 1スツ
CBD	10	7%	-5%	2%	- 1/.9	200%	0%	-75%	00%	- 67%	+2% N%	% %0	0%	-1-3% N%	-7.%
	11	1/0	/0 K 9/	۲% ۲۷	_ 10%	171%	%0 %۱۸	-5/9	_7%	-/.7%	0%	0%	0%	0% 0%	-4% _/.%
	11 12	27%	20%	28%	16%	147%	40%	-71%	- 5%	- 9%	0%	0%	. 0%	0% 0%	10%
No IEP	12	17%	20%	15%	10%	15.2%	40%	-31%	<u>د</u> دہ ۵۷	-0%	0%	0% 0%	0%	0% 0%	17/0
NO. JEK	5	13%	13%	<i>\\</i>	12/0	100%	0%	-04%	7/0	10%	0%	0/6	0%	0/6	16/0
TOTAL		33%	25%	31%	19%	76%	35%	0%	50%	-5%	- 1%	-6%	18%	19%	27%

IV. TRANSIT POTENTIAL

The process of determining the transit potential of existing and new service areas begins with a close examination of the projected travel flows in the year 1995. The work trip table produced in the preceding tasks serves as the foundation for this analysis since commuter trips represent between 60% and 85% of the trips on a typical line-haul transit route. Where there exists a significant number of work trips being made to a concentrated location from a series of zones along a linear corridor, there exists the potential for successful transit service.

The simulated trip tables were analyzed from a number of different perspectives to identify high potential service areas. To efficiently examine the commuter flows embodied in these trip tables, realizing there are over 20,000 different possible combinations, the study focused its attention on four factors. The first three concentrate on where people are trying to go, the fourth on where they are coming from. In looking at where people are going, attention is given to those zones expected to experience the most significant growth in new work trips, those areas with the largest amounts of work trip destinations, and those areas with the highest densities of commuter travel. Finally, a close look is taken at the zones that send their workers to the high intensity work zones.

By making such an examination, the study hopes to recognize an underlying pattern of commuter travel which can help define a conceptual plan for a new transit system structure for South Jersey.

Most Trip Growth

First, the zones were ranked according to the magnitude of trip origins, destinations, growth in origins, growth in destinations, and density of destinations. These rankings focus attention on those locations with the greatest intensity of commuter activity. The top 20 zones in the categories of Total Work Trip Destinations, Growth in Destinations, and Density of Destinations are listed in Figure 12.

One way of looking for new service areas or where service should be strengthened is to identify where the largest numbers of new jobs will be located. Part A of Figure 12 shows that Atlantic City will be by far the single largest location of new work trip destinations between 1980 and 1995. With nearly 42,000 new commuters to serve, this is a location that should attract considerable attention.

The next biggest "gainer" of new work trips will be the Dover Township - Toms River area of Ocean County. Though this area is projected to gain a fourth of the Atlantic City increase, it is nearly four times the size of the Atlantic City zone. This means that the trips are likely to be far less concentrated than in Atlantic City. However, three of the other top 20 zones are in the Dover area, known as the Route 9 Corridor. These zones represent a significant amount of the job growth of South Jersey.

The third largest attractor of new work trips will be Cherry Hill in Camden County. Even more significant than the 8,400 new commutes into this zone is the observation that five other zones in the top 20 are adjacent to Cherry Hill along the Route 73 Corridor.

The other large growth zones are scattered about each of the other counties except Cape May, Cumberland and Salem. A point of curiosity: since this data was generated, Congress has acted to close Fort Dix. The large growth in work trips projected for that zone will, in actuality, become a significant loss.

Greatest Total Trips

Looking at job growth will not tell the full story of where transit service is needed. Areas which gain significant new jobs may still be smaller employment areas than more established areas. Therefore, it is still important to look at those locations with the greatest total jobs. Part B of Figure 12 shows that in 1995

Atlantic City will be the single largest employment site in all of South Jersey. The two other locations, Cherry Hill and the Dover area, discussed above also show up near the top of this listing.

Three new locations are brought into focus when looking at total trip destinations: South Jersey's other two large cities, Trenton and Camden, and the Philadelphia Central Business District (CBD). These three cities have long been the primary employment locations for South Jersey residents. This table indicates that they will continue to be important economic centers into the future.

Most of the remaining zones in Part B are the same zones that were in Part A. Apparently, those that have will be those that get, in this case new jobs. This indicates that employment growth is mostly a matter of adding to existing centers and expanding at their peripheries.

Highest Trip Densities

Transit functions best in areas of sufficient density where the travel needs of many can be satisfied by the limited path of the transit vehicle. Therefore, Part C of Figure 12 ranks the zones in order of work trip destinations per square mile. Though this is a crude measure when applied to zones of such large areas as is the case with some of the South Jersey zones, it does help to focus attention on certain very high density areas.

Here can be seen the significance of the Philadelphia CBD as the transit center of the region. It is nearly twice as dense as Atlantic City in work trip destinations and that is only considering the trips projected to be made by New Jersey residents. Such densities, in the confined space of 2.5 square miles, increase the probability tremendously that there will be a significant number of trips coming form the same locations and that they can be served by transit service. Furthermore, with more than 280,000 jobs in the CBD, the potential for trip growth is a real possibility. This study has assumed a certain proportion of the CBD jobs will be filled by New Jersey residents based on prior trends. A significant change in travel access to these jobs from New Jersey would significantly alter the number of work trips and increase the density even more.

The three South Jersey cities also top the list in Part C. Each has had a history of transit service. Each has concentrations of employment within limited subsections of the city that rival the density noted for the Philadelphia CBD (ie, NJ commuters only). The same observations made can be applied to these cities, including the potential for attracting new transit trips.

The other zones in Part C are all served by NJ TRANSIT and/or PATCO (though Bridgeton is not well served). However, it is interesting to note that each is served more as a residential work trip origin rather than an non-residential work trip destination. Pennsauken contains vast industrial and commercial business parks, Woodbury is a bustling county seat and regional center, Collingswood and Haddonfield and older town centers with gentrified business districts, and Gloucester City is an older port/factory center making the transition in a changing business climate.

Figure 12 Work Trip Destination Rankings

Part A - Top 20 Zones by Trip Growth - 1995 to 1980 Change in Work Trip Destinations

Atlantic City	42,200	11	Gloucester Twp	4,200
Dover Area	10,200	12	Pennsauken-Merchantvl	3,800
West Windsor	9,700	13	Hamilton (Mercer)	3,800
Cherry Hill	8,300	14	Mt Laurel	3,400
Lawrence	7,600	15	Evesham	3,400
Brick Area	7,000	16	Medford Area	3,200
Lakewood	6,000	17	Burlington Area	3,100
Voorhees-Gibbsboro	4,700	18	Winslow-Chesilhst	3,000
New-No Han-Wrigstn	4,500	19	Deptford-Wenonah	2,600
Moorestown	4,400	20	Higtstw-E Windsor	2,600
	Atlantic City Dover Area West Windsor Cherry Hill Lawrence Brick Area Lakewood Voorhees-Gibbsboro New-No Han-Wrigstn Moorestown	Atlantic City42,200Dover Area10,200West Windsor9,700Cherry Hill8,300Lawrence7,600Brick Area7,000Lakewood6,000Voorhees-Gibbsboro4,700New-No Han-Wrigstn4,500Moorestown4,400	Atlantic City42,20011Dover Area10,20012West Windsor9,70013Cherry Hill8,30014Lawrence7,60015Brick Area7,00016Lakewood6,00017Voorhees-Gibbsboro4,70018New-No Han-Wrigstn4,50019Moorestown4,40020	Atlantic City42,20011Gloucester TwpDover Area10,20012Pennsauken-MerchantvlWest Windsor9,70013Hamilton (Mercer)Cherry Hill8,30014Mt LaurelLawrence7,60015EveshamBrick Area7,00016Medford AreaLakewood6,00017Burlington AreaVoorhees-Gibbsboro4,70018Winslow-ChesilhstNew-No Han-Wrigstn4,50019Deptford-WenonahMoorestown4,40020Higtstw-E Windsor

Part B - Top 20 Zones by Total Trips - 1995 Work Trip Destinations

Atlantic City	71,100	11	Princeton Area	21,000
Trenton	55,100	12	Brick Área	20,800
Cherry Hill	39,500	13	Lawrence	20,600
Camden	36,100	14	New-No Han-Wrigstn	20,600
Dover Area	32,700	15	Lakewood	17,200
Phila CBD (NJ only)	30,800	16	Moorestown	16,700
Pennsauken-Merchantvl	29,400	17	West Windsor	16,400
Hamilton (Mercer)	25,800	18	Burlington Area	14,100
Ewing	24,800	19	Higtstwn-E Windsor	12,800
Vineland	24,100	20	Gloucester Twp	12,500
	Atlantic City Trenton Cherry Hill Camden Dover Area Phila CBD (NJ only) Pennsauken-Merchantvl Hamilton (Mercer) Ewing Vineland	Atlantic City 71,100 Trenton 55,100 Cherry Hill 39,500 Camden 36,100 Dover Area 32,700 Phila CBD (NJ only) 30,800 Pennsauken-Merchantvl 29,400 Hamilton (Mercer) 25,800 Ewing 24,800 Vineland 24,100	Atlantic City71,10011Trenton55,10012Cherry Hill39,50013Camden36,10014Dover Area32,70015Phila CBD (NJ only)30,80016Pennsauken-Merchantvl29,40017Hamilton (Mercer)25,80018Ewing24,80019Vineland24,10020	Atlantic City71,10011Princeton AreaTrenton55,10012Brick AreaCherry Hill39,50013LawrenceCamden36,10014New-No Han-WrigstnDover Area32,70015LakewoodPhila CBD (NJ only)30,80016MoorestownPennsauken-Merchantvl29,40017West WindsorHamilton (Mercer)25,80018Burlington AreaEwing24,80019Higtstwn-E WindsorVineland24,10020Gloucester Twp

Part C - Top 20 Zones by Trip Density - 1995 Trips Per Sq. Mile

1	Phila CBD (NJ only)	12,200
2	Trenton	7,300
3	Atlantic City	6,000
4	Camden	4,200
5	Pennsauken-Merchantvl	2,600
6	Woodbury-City-Hts	2,600
7	Collingswood-Wdlyn	2,500
8	Haddonfield-Tav	1,900
9	West∨ille	1,900
10	Glouc City-Brklwn	1,800

11	Maple Shade	1,700
12	Audubon Pk-Oaklyn	1,700
13	Ewing	1,600
14	Cherry Hill	1,600
15	Palmyra-Riverton	1,600
16	Pleasantville	1,500
17	Somerdl-Stratfd-Hi Nel	1,500
18	Bridgton	1,500
19	Barrington-Had Hts	1,400
20	Riverside-Delanco	1,300

Significant Commuter Flows

The next step in determining the transit potential of South Jersey looked at the top 20 zones which feed workers to the high intensity employment zones. The zones chosen for this analysis include the Atlantic City, Trenton, Camden, Cherry Hill, the Dover area, and the Philadelphia CBD. Figure 13 lists the top 20 origin zones for each employment location and the projected number of work trips in 1995.

It should be noted immediately that the number one "supplier" of workers to any of these zones is the zone itself. Referred to as intrazonal trips, they represent the workers who are able to live in close proximity to their jobs. Most commuters would like to minimize the distance they have to travel every day to work. If work is available in the area and housing is suitable and sufficient then there will always be a significant proportion of intrazonal work trips. The following discussion will, therefore, address the non-intrazonal trip flows.

To help explain the commuter flows, Figures 14 through 19 display the flows as "desire lines" on close-up maps of each high intensity zone.

Atlantic City workers are projected to be coming from the surrounding shore communities of Atlantic County, from the north in Ocean County and south in Cape May County along the Garden State Parkway, and from the west along the Black and White Horse Pikes, the AC Rail Line and the Expressway. There is also a significant number of trips coming from the Vineland zone.

Based on the population forecasts developed by the county for use in this study, there appears to be a sufficiency of employed residents to meet a sizable proportion of the demands for labor in the growing Atlantic City economy. Eighty-five percent of the nearly 71,000 employee trips projected to be made to the city are shown in this data. However, that still leaves over 10,000 work trips not satisfied by this area which will be made from even longer distances.

One limitation of the data for Atlantic City is that the methodology and data resources used in this study do not permit the estimation of travel flows by skill level of worker or by job type. If affordable housing is not available to Atlantic City workers in the communities identified, then the work trips will be less from these areas and greater from other communities farther away.

Trenton workers are projected to come from the surrounding communities of Mercer County and Bucks County in Pennsylvania, along the Route 1 Corridor into North Jersey, and from each of the counties adjacent to Mercer County. However, nearly 60% of the work trips into Trenton will be made by residents of either Trenton itself or one of the three neighboring townships of Hamilton, Ewing or Lawrence. Another 20% are projected to come from beyond the study area, most notably Bucks County and areas up along US 1.

One limitation of the data for Trenton derives from the location of the city in relation to the rest of the study area. Trips from areas beyond the study area had to be aggregated into large zones representing vast and diverse populations and jobs in order to make the task of forecasting travel flows manageable. This makes it less clear where trips to/from these areas are actually based. Because Mercer County is nearly surrounded by non-study areas and the proximity of Trenton to the edge of the study area, great detail is not available on Trenton's tripmaking. Fortunately, NJ TRANSIT is conducting other studies which focus on Mercer County.

Work trips to Camden City come from all across Camden County, as well as northern Gloucester and western Burlington counties. Camden also receives a number of work trips from sections of Philadelphia. There are two notable groupings of trips coming into Camden. The largest comes from neighboring Pennsauken and Cherry Hill townships, thirty to forty year old communities which spread out along Routes 70, 38 and 130 (north). The other group is comprised of older, more densely developed, suburban communities clustered along Routes 30 and 130 (south). However, the list only totals to 75% of Camden's work trip origins, indicating that there are many more zones which contribute workers to its economy.

Figure 13 Feeder Zones to High Intensity Employment Zones

Work Trips to Atlantic City in 1995

1	Atlantic City	10,900
2	Vent-Mar-Long	7,600
3	Galloway-Pt Rep	6,800
4	Brigantine	5,600
5	Egg Harbor Twp	5,000
6	Pleasantville	3,300
7	Ocean City	2,700
8	Little Egg Area	2,500
9	Hamilton	2,200
10	Absecon	1,900

11	Mullica-Egg City	1,800
12	Stafford	1,500
13	Upper Twp	1,500
14	Somers Pt	1,500
15	Northfield	1,200
16	Linwood	1,000
17	Barnegat-Ocean	900
18	Hammonton-Folsom	800
19	Winslow-Chesilhrst	700
20	Vineland	700

Work Trips to Trenton in 1995

1	Trenton	15,900
2	Hamilton	10,600
3	Bucks County	6,900
4	Ewing	3,900
5	Lawrence	1,700
6	Somerset/Middlesex	1,500
7	NJ Northern Tier	1,200
8	Field-Borden Area	1,000
9	Monmouth	900
10	Penngtn-Hopewell	900

11	New-No Han-Wrigstn	700
12	Pemberton Area	600
13	Warren/Hunterdon	600
14	Burlington Area	600
15	Princeton Area	500
16	Mans-Spring-Chest	500
17	Higtstwn-E Windsor	500
18	West Windsor	400
19	Florence	400
20	Willingboro	400

Work Trips to Camden City in 1995

Camden	7,600
Cherry Hill	2,800
Pennskn-Merchantvl	2,400
Collngswd-Wdlyn	1,900
Glouc City-Brklwn	1,200
N/NW & W Phila	1,100
Belmwr-Mt Eph-Runn	1,100
Gloucester Twp	1,100
Audubon-Pk-Oaklyn	900
Haddon Twp	900
	Camden Cherry Hill Pennskn-Merchantvl Collngswd-Wdlyn Glouc City-Brklwn N/NW & W Phila Belmwr-Mt Eph-Runn Gloucester Twp Audubon-Pk-Oaklyn Haddon Twp

11	W Deptford-Nat Pk	700
12	Barrington-Had Hts	600
13	Deptford-Wenonah	600
14	Lower NE Phila	600
15	Evesham	600
16	Washington	500
17	Voorhees-Gibbsboro	500
18	Maple Shade	500
19	Bucks County	500
20	W & SW Phila	500

Figure 13 Feeder Zones to High Intensity Employment Zones (continued)

Work Trips to Cherry Hill in 1995

1	Cherry Hill	9,100
2	Maple Shade	2,300
3	Evesham	2,100
4	Voorhees-Gibbsboro	1,800
5	Gloucester Twp	1,500
6	Pennskn-Merchantvl	1,400
7	Haddonfield-Tav	1,300
8	Mt Laurel	1,200
9	Barrington-Had Hts	1,000
10	Haddon Twp	1,000

11	Camden	900
12	Lindenwd-Laurel Sp	900
13	Medford Area	900
14	Somerdl-Stratfd-Hi	800
15	Belmwr-Mt Eph-Runn	800
16	Lawnside-Magnolia	700
17	Audubon-Pk-Öaklyn	600
18	Collngswd-Wdlyn	600
19	Washington	600
20	Cinnaminson	500

Work Trips to the Dover Area in 1995

1	Dover Area	15,900
2	Berkeley Area	8,300
3	Brick Area	3,100
4	Lacy	1,200
5	Manchester Area	800
6	Lakewood	800
7	Monmouth	600
8	Barnegat-Ocean	400
9	Jackson	400
10	Stafford	200

11	NJ Northern Tier	200
12	Somerset/Middlesex	60
13	Plumsted	50
14	Little Egg Area	50
15	NY City	50
16	New-No Han-Wrigstn	50
17	Pemberton Area	50
18	Long Bch Island	40
19	Bucks County	30
20	Hamilton	20

Work Trips to the Phila. CBD in 1995

1	Camden	2,700
2	Cherry Hill	2,100
3	Pennskn-Merchantvl	1,500
4	Collngswd-Wdlyn	1,400
5	Lindenwd-Laurel Sp	1,300
6	Gloucester Twp	1,200
7	Haddon Twp	1,000
8	W Deptford-Nat Pk	900
9	Belmwr-Mt Eph-Runn	900
10	Voorhees-Gibbsboro	900

11	Deptford-Wenonah	800
12	Audubon-Pk-Oaklyn	700
13	Washington	700
14	Haddonfield-Tav	700
15	Evesham	600
16	Barrington-Had Hts	600
17	Maple Shade	500
18	Somerdl-Stratfd-Hi	500
19	Glouc City-Brklwn	500
20	Mt Laurel	500

The limitations to Camden's data are somewhat similar to the limitations with the Trenton data. That is, the proximity of Camden to the edge of the study area restricts the detail of trips beyond the border. Fortunately, Camden lies at the heart of the DVRPC region and is, therefore, well covered by an ongoing planning process.

The work trip desire lines for Cherry Hill radiate around the zone like a star burst, somewhat evenly distributed in all directions. The township absorbs workers from communities all around. This diffuse pattern, combined with the large area of the zone, helps explain the high levels of traffic experienced on area roadways. It also shows the difficulty of trying to provide traditional transit service to even a large suburban work center like Cherry Hill.

One limitation of the Cherry Hill data might have been the large size of the zone masking a possible high density concentration of employment. In fact, however, Cherry Hill's jobs are spread across most every section of the township. It is this lack of a concentrated employment center that makes it nearly impossible for traditional transit to attract a sufficient number of riders from their private autos to make a noticeable decrease in traffic congestion.

The work trip desire lines for the Dover area are very different than Cherry Hill's. Fewer in number with any appreciable magnitude, these lines indicate a very limited source of origins. Whereas Cherry Hill receives 75% of its work trips from the top 20 zones, Dover receives 84% from just three zones: the Dover Area itself, the Berkeley Area, and the Brick Area. However, these zones are quite large and actually represent a comparable total land area.

What is striking about the Dover data is the orientation of the commuter travel desire lines along the Parkway and County Route 549. It is such linear development patterns that tend to complement transit service.

New Jersey residents working in the Philadelphia CBD come from all over South Jersey. The top 20 zones of origin are heavily dominated by Camden County zones, reflecting the high concentration of population, the historical relationship to Philadelphia, and the presence of the PATCO Lindenwold High Speed Line. However, three major zones in Gloucester County along the freeways of I-295 and NJ 42, West Deptford, Deptford and Washington townships, are also among the top contributors. Burlington County also is represented by three zones in the list, two "young" townships, Evesham and Mount Laurel, and the more established community of Maple Shade.

The list of Philadelphia CBD origins in Figure 13 accounts for only 65% of the New Jersey based work trips. The remaining 35% fill-in most of the zones in the urban core.

One limitation of the data for the Philadelphia CBD is that for this study the total number of work trip destinations to that location was predetermined based on prior trends. The number is reasonable given the data sources used and assuming no change from current conditions. However, if there were a significant change in accessibility to the CBD from South Jersey, such as another high speed line or major freeway, then New Jersey residents could be expected to hold a larger proportion of Center City jobs than projected.

Pattern of Commuter Travel

What emerged from this investigation of zonal trip projections is an understanding of the limited number of high intensity commuter corridors with significant amounts of daily travel and the abundance of much smaller commuter flows throughout the remainder of the study area. The predominant characteristic of commuter travel in South Jersey is that the vast majority of trips are made within the vicinity of the home zone. This is not an unusual characteristic. Rather it is to be expected that most people will try to live as close to their jobs or work as close to their homes as possible. This is generally modified by two circumstances: the presence of a major city or other employment concentration that will draw workers from longer distances or the lack of jobs near the home which forces workers to travel longer distances to seek employment.

PREPARED BY DELAWARE VALLEY REGIONAL PLANNING COMMISSION

33

6 - 7

7 - 8

10 - 11

2 - 3

3 - 4

NJ TRANSIT SOUTH JERSEY TRANSIT PLAN

FIGURE 16

NTRANSIT

FIGURE 17

From the various examinations of commuting patterns discussed above comes the recognition of three major categories of zones from the viewpoint of commuter destinations. The first tier includes the major cities of Atlantic City, Trenton, Camden and the Philadelphia central business district that appear near the top of each list, where very significant numbers of trips are destined to concentrated locations and where sizable numbers of new trips are expected to be made. The second tier encompasses those other regional centers with somewhat lower, but still appreciable, concentrations of work trip destinations which also will experience new trip growth. Included in this group are places like Cherry Hill, Toms River, Pennsauken, Princeton, and Woodbury. These two tiers also contain much of the region's shopping, cultural and entertainment opportunities. To this group should be added the major regional shopping malls. The third tier is comprised of all those locations with low, yet recognizable, concentrations of trip destinations: the scattered new development complexes, the struggling older towns, the strip development corridors, and other more isolated job sites.

Providing effective transit service to these three tiers may require that three different approaches be taken. Whatever the approach, the objectives remain the same. Service should be targeted to each market in a manner that meets the accessibility needs of the commuter, getting from one point to another at the desired time, while offering the trip at a price and speed that is reasonably competitive with making the trip by auto. The extent that these objectives are met will determine whether a sufficient proportion of riders who can afford to choose their mode of travel will to be attracted to the service. The final objective is that the service should be provided in a cost effective manner by an operator who can match the demands of the commuter with both the riders' and taxpayers' ability to pay.

Applying this target market approach to service planning might suggest the following three types of service:

Point-to-point line haul routes operating over exclusive rights-of-way or on major arterial highways
providing high speed, limited stop service at a premium fare. These routes could be either rail
(PATCO-type rapid transit, light rail or commuter rail) or express bus (in busway, designated lanes
or mixed traffic). Service, operated from the suburban regional centers and park & ride facilities
to the major cities, would be peak period intensive and targeted to the longer distance commuter.

Service might be provided as an express bus lane on the Route 42 Freeway, rail service along the Conrail right-of-way between Camden-Woodbury-Glassboro or between Camden-Moorestown-Mt Holly, an I-295/I-195 express bus route between Woodcrest-Trenton or between Trenton-Dover.

2. Corridor line haul routes operating along major radial highways or a well defined circumferential highway providing frequent, highly visible, continuous service. Similar to portions of some existing NJ TRANSIT routes (ie, F,7,G, etc), these routes would operate between regional hubs, supplying mid-distance and local service limited to the route corridor. At the regional hubs, these routes would make connections with the point-to-point routes.

This service could operate along such corridors as Route 537 between Moorestown-Camden, on Route 551 between Woodbury-Camden, on Route 168 between Camden-Blackwood, on Route 30 between Berlin-Camden or many other arterial corridor roads which connect regional centers.

3. Local collector/distributor routes operating on minor arterial roads providing service between compact neighborhoods, isolated villages, activity centers, government centers, etc. These short routes also provide the connecting links to the point-to-point and corridor routes. These routes serve the great need for purely local transport and might best be designed, operated and partly subsidized by the localities they serve.

Parts of many NJ TRANSIT routes provide some of this service today. However, it may not be prudent to burden a statewide transit operator with these responsibilities. Rather, some of these route segments could be combined with expanded versions of the many county and municipal shuttle services or possibly contracted to private carriers. Coordination of these services with the point-to-point and corridor services is critical to the implementation of a complete transit system.

V. ESTIMATION OF RIDERSHIP POTENTIAL

Throughout the course of DVRPC's work on this NJ TRANSIT study, it was obvious that the orientation of travel toward the Philadelphia CBD and central Camden City from the suburbs remains a significant factor in the region. Therefore, a closer examination was undertaken to see if there might be sufficient ridership potential to warrant the construction of one or more fixed guideway facilities. This section of the report discusses the results of that examination for the two corridors radiating outward from the CBD toward Burlington and Gloucester Counties. Also examined was the corridor extending from the Cherry Hill area toward Trenton.

In planning studies of this nature, the objectives are to determine which corridors might warrant a fixed guideway transit facility and the potential of that system to achieve certain thresholds of ridership. Therefore, the terminology of estimating ridership potential, rather than estimating actual ridership, is used. Ridership potential seeks to determine the type of system (rail, bus, etc.) and the scale of service that could be supported by a new facility. The estimates of potential are given as order of magnitude ranges rather than specific ridership numbers. Detailed ridership estimates are then developed in follow-up Alternatives Analysis / Draft Environmental Impact Statement (AA/DEIS) studies for those corridors where high capital cost, fixed guideway facilities are contemplated. For bus system and other non-fixed facility proposals, the order of magnitude estimates are sufficient to guide implementation since the service generally can be easily tailored to match the actual demand.

Each of the corridors examined has unique attributes that warrant individualized analyses. A number of different approaches were applied to understand the ridership potential of a given corridor. These included:

- assessing the corridor in light of the ridership levels experienced in similar corridors,
- modelling the market share for transit in relation to the distance from a transit route and the distance from the destination,
- varying the market share for transit with respect to the type of transit service that is offered, and
- adjusting the estimates of prior studies based on new projections for corridor population and employment.

In each of the discussions that follow, the term ridership is used. To avoid confusion that often occurs when stating ridership figures, the term is defined to mean the number of transit system boardings made on an average weekday. This definition also means the number of trips taken on the system. The numbers, therefore, represent twice the number of persons using the system.

Gloucester County Corridor

This corridor had been the focus of a 1984 study by the New Jersey Department of Transportation and the DVRPC titled the "Gloucester County Corridor Study". The corridor extended from Gloucester City to below Glassboro. That study concluded that a PATCO-type rail line extending from Camden to the Deptford Mall via NJ 42/55 would attract an average weekday ridership of 16,000 in the year 2000, more than one third (40%) the ridership on the Lindenwold line (40,000).

A comparison of the population and employment projections developed by this study with those used in the 1984 study (adjusted to the common year of 1995) revealed that the corridor population is now expected to be about 4.9% less than forecasted earlier, while employment in the Philadelphia CBD may be as much as 10% less. Simply applying these factors to the original ridership estimate would yield a revised estimate of 13,700 average weekday riders. Though this revised estimate would be 86% of the 1984 estimate, the line might still be expected to carry about one third (34%) as many riders as the Lindenwold line.

A second approach to reviewing the 1984 ridership estimate was employed. Using 1980 Census Journey-to-Work data, a relationship was established between the distance from a commuter's home to the nearest rail station versus the percent of work trips reportedly using rail. This relationship was further stratified by the overall distance between the commuter's home and the place of work. The data showed that the closer one lives to a rail service, the higher the likelihood of using transit. In addition, the further the commuter lives from the work place, the greater the probability of using the transit facility. Figure 20 graphically depicts this relationship.

This method was applied to the travel demand data forecasted by the current study for both the Gloucester Corridor and for the PATCO Lindenwold corridor. With this approach, the ridership on a PATCO-type line to Deptford Mall was estimated to be slightly more than a third (34%) of the Lindenwold line ridership or 13,600 daily riders.

The percent-by-distance method was also used to estimate the ridership that might be attracted to the facility if it were extended to Glassboro, either via NJ 55 or via the Conrail right-of-way. In both of these cases, ridership would approach half of the Lindenwold ridership (18,700 - 47% and 19,700 - 49%, respectively).

Based on these analyses, it is likely that a PATCO-type facility extended into the Gloucester County Corridor could attract between 13,000 and 20,000 daily riders, depending on the alignment.

Burlington County (Route 38) Corridor

This corridor had been the subject of a study by NJ DOT and DVRPC in 1984 titled the "Burlington County Corridor Study". This was a companion study the Gloucester County Corridor Study discussed above which employed the same methodologies and database. The 1984 study concluded that a PATCO-type rail line extending from Camden to the Moorestown Mall via the old PRSL right-of-way and certain new right-of-way sections would attract an average weekday ridership of 12,500 in the year 2000, or just less than one third (31%) of the Lindenwold line ridership.

A comparison of the population and employment projections developed by this study with those used in the 1984 study (adjusted to the common year of 1995) revealed that the corridor population is now expected to be about 1.5% less then forecasted earlier, while employment in the Philadelphia CBD, as mentioned above, may be as much as 10% less. Simply applying these factors to the original ridership estimate would yield a revised estimate of 11,100 average weekday riders. Since this revised estimate would be 89% of the 1984 estimate, the line might be expected to carry less than one third (28%) as many riders as the Lindenwold line.

The percent-by-distance method (discussed above) was applied to the travel demand data forecasted by the current study for the Route 38 Corridor and compared to that for the PATCO Lindenwold corridor. With this approach, the ridership on a PATCO-type line to Moorestown Mall was estimated to be more than a third (35%) of the Lindenwold line ridership or 13,900 daily riders.

The percent-by-distance method was also used to estimate the ridership that might be attracted to if the line were extended to the Mount Holly area. In this case, ridership would exceed half (52%) of the Lindenwold ridership or 20,700 daily riders.

Based on these analyses, it is likely that a PATCO-type facility extended into the Burlington County (Route 38) Corridor could attract between 11,000 and 21,000 daily riders depending on the length of the extension.

Figure 20

Cherry Hill to Trenton Corridor

This corridor was suggested by members of the study advisory committee. Later, interest in the corridor arose as an outgrowth of an operational analysis of the Atlantic City Rail Line (ACRL) that was seeking to connect the ACRL with North Jersey rail service. At issue in the operational analysis was whether it was more cost effective to use the AMTRAK Northeast Corridor tracks via a new connection at Frankford Junction in Philadelphia just over the Delair Bridge or to use Conrail's Bordentown secondary tracks along the New Jersey side of the Delaware River via new connections at Delair and Trenton. The suggested added advantage of the Bordentown route was the opportunity to provide rail service to the communities along the line between Pennsauken and Trenton.

DVRPC examined the 1995 trip table for the corridor to determine the order of magnitude of trips that may utilize rail service. Not surprisingly, the work trips destined to Trenton are very heavily weighted to zones in Mercer and northeastern Burlington counties. One third of the trips are projected to come from the Bordentown - Fieldsboro area, while less than 10% would come from the Cherry Hill - Pennsauken area.

Three different approaches were applied to estimate the level of ridership that might be expected on rail service run over the Bordentown line. The percent-by-distance method was adjusted to account for the lower level of service to be offered compared to a PATCO-type service. This procedure estimated that less than 1000 daily trips would be attracted to the line.

A second approach looked at potential percent transit adjusted by the proportion of the origins and destinations served. This crude method presumes that someone living next to a station and travelling to a work location next to another station would have some theoretical probability of taking the train based on the distance to the destination and the level of service. The method factors this probability by the estimated proportions of origins and destinations within the "service envelope", ie, one quarter to one half mile of the destination station, one half to one mile of the origin station. This somewhat subjective method estimated that 500 daily trips might be made on the line.

Finally, the ridership levels on other rail lines were examined in order to make a comparative estimate. In particular, the SEPTA Trenton Line (R7) was examined. That line, with more service to Trenton from a corridor more dense than the Bordentown Line corridor, only carried 800 riders in 1980 between Torresdale and Trenton. The 18 mile trip took 24 minutes for an effective speed of 44 mph. Twenty-one trains served each direction daily. DVRPC compared station boardings to service area population for the R7 corridor. Applying those rail trips per capita rates to the Bordentown corridor yielded an estimated 650 daily trips. However, this level of ridership assumes the same level of service as provided on the R7 line, three times the service contemplated for the Bordentown line.

Therefore, it might be expected that rail service operating over the Bordentown secondary between Cherry Hill and Trenton, with its extended travel time of 85 minutes, three stations and low frequency, would attract at most 500 to 1000 riders daily. This estimate also presumes that duplicative bus service along the corridor would be terminated. It should be noted that the present bus service offers a higher frequency than that proposed for the rail line and with comparable travel times.

Summary of Ridership Potential

Gloucester County Corridor Burlington County (Route 38) Corridor Cherry Hill to Trenton Corridor Average Weekday Ridership Potential

> 13,000 - 20,000 11,000 - 21,000 500 - 1,000