TRANSPORTATION SAFETY ANALYSIS AND PLAN

An Analysis of Crash Data and Recommended Safety Strategies for the Greater Philadelphia Region

NOVEMBER 2018 | Fifth Edition

A product of the

The Delaware Valley Regional Planning Commission is the federally

designated Metropolitan Planning Organization for a diverse nine-county region in two states: Bucks, Chester, Delaware, Montgomery, and Philadelphia in Pennsylvania; and Burlington, Camden, Gloucester, and Mercer in New Jersey.

DVRPC's vision for the Greater Philadelphia Region is a prosperous, innovative, equitable, resilient, and sustainable region that increases mobility choices by investing in a safe and modern transportation system; that protects and preserves our natural resources while creating healthy communities; and that fosters greater opportunities for all.

DVRPC's mission is to achieve this vision by convening the widest array of partners to inform and facilitate data-driven decision-making. We are engaged across the region, and strive to be leaders and innovators, exploring new ideas and creating best practices.

TITLE VI COMPLIANCE | DVRPC fully complies with Title VI of the Civil Rights Act of 1964, the Civil Rights Restoration Act of 1987, Executive Order 12898 on Environmental Justice, and related nondiscrimination statutes and regulations in all programs and activities. DVRPC's website, www.dvrpc.org, may be translated into multiple languages. Publications and other public documents can be made available in alternative languages and formats, if requested. DVRPC public meetings are always held in ADA-accessible facilities, and in transit-accessible locations when possible. Auxiliary services can be provided to individuals who submit a request at least seven days prior to a public meeting. Requests will be accommodated to the greatest extent possible. Any person who believes they have been aggrieved by an unlawful discriminatory practice by DVRPC under Title VI has a right to file a formal complaint. Any such complaint may be in writing and filed with DVRPC's Title VI Compliance Manager and/or the appropriate state or federal agency within 180 days of the alleged discriminatory occurrence. For more information on DVRPC's Title VI program or to obtain a Title VI Complaint Form, please visit: www.dvrpc.org/GetInvolved/TitleVI, call (215) 592-1800, or email public_affairs@dvrpc.org.

DVRPC is funded through a variety of funding sources including federal grants from the U.S. Department of Transportation's Federal Highway Administration (FHWA) and Federal Transit Administration (FTA), the Pennsylvania and New Jersey departments of transportation, as well as by DVRPC's state and local member governments. The authors, however, are solely responsible for the findings and conclusions herein, which may not represent the official views or policies of the funding agencies.

Table of Contents

Executive Summary	01
1. Crash Trends in the Greater Philadelphia Region	03
Measuring Safety in the Greater Philadelphia Region	
The Cost of KSI Crashes	
Regional Statistics and Background	
Current Trends and Future Forces	13
2. Safety Planning in the Greater Philadelphia Region	15
Creating a Safety Plan	
Setting Performance Measures	20
Regional Safety Task Force	25
3. Regional Safety Emphasis Areas	
Introduction	
Intersection Safety	
Lane Departure	45
Distracted Driving	51
Aggressive Driving	59
Impaired Driving	66
Pedestrian and Bicyclist Safety	72
Older Drivers	78
Young Drivers	84
Seat Belt Use	90
Heavy Truck-Related	92
Motorcycle Safety	94
Work Zone Safety	96
Train and Trolley	
Appendix A: Municipal Data	A1
Appendix B: RSTF Membership	B1
Appendix C: Emphasis Area Overlaps	C1
Appendix D: Emphasis Area Query Formats	D1

Figures

Figure 1.1: Fatalities and Serious Injuries from Crashes in the Greater Philadelphia Region, 2007–2016	5
Figure 1.2: Total KSI and KSI Rate per Hundred Million VMT in the Greater Philadelphia Region, 2007–20160	6
Figure 1.3: KSI Rate by Municipal or Planning District (Philadelphia) Population, Five-Year Average, 2012–2016	9
Figure 1.4: KSI Rate by Total Municipal or Planning District (Philadelphia) Lane Miles, Five-Year Average, 2012–2016	0
Figure 1.5: KSI Rate by Municipal or Planning District (Philadelphia) Daily VMT, Five-Year Average, 2012–2016	1
Figure 1.6: KSI Rate by VMT for Limited-Access Roads, Five-Year Average, 2012–2016	2
Figure 2.1: Pennsylvania's Safety Focus Areas (Not Including Traffic Records Data or Emergency/Incident Influence Time)*	9
Figure 2.2: Fatalities and Serious Injuries, Greater Philadelphia Region, Five-Year Rolling Averages22	2
Figure 2.3: Rate of Fatalities and Serious Injuries by 100 Million VMT, Greater Philadelphia Region, Five-Year Rolling Averages	3
Figure 2.4: Non-Motorized Fatalities and Serious Injuries, Greater Philadelphia Region, Five-Year Rolling Averages	4
Figure 2.5: Speeding MIT	5
Figure 3.1: KSI and Crash Incidence by Emphasis Area, Three-Year Average, 2013–2015	4
Figure 3.2: Importance of Reducing Intersection Crashes by County40	0
Figure 3.3: Intersection KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016	1
Figure 3.4: Importance of Reducing Lane Departure Crashes by County4	6
Figure 3.5: Lane Departure KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016	7
Figure 3.6: Importance of Reducing Distracted Driving by County	2
Figure 3.7: Distracted Driving KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016 (Pennsylvania)	3
Figure 3.8: Distracted Driving KSI Crash Rate by AADT by Municipality, 2012–2016 (New Jersey)	4
Figure 3.9: Importance of Reducing Aggressive Driving by County	0
Figure 3.10: Aggressive Driving KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016 (Pennsylvania)6	1
Figure 3.11: Aggressive Driving KSI Crash Rate by AADT by Municipality, 2012–2016 (New Jersey)62	2
Figure 3.12: Importance of Reducing Impaired Driving by County6	7
Figure 3.13: Impaired Driving KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016	8

Figure 3.14: Importance of Promoting Pedestrian and Bicyclist Safety by County	73
Figure 3.15: Pedestrian and Bicylist KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012-2016	74
Figure 3.16: Importance of Promoting Older Driver Safety by County	79
Figure 3.17: Older Driver KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016	80
Figure 3.18: Importance of Promoting Young Driver Safety by County	85
Figure 3.19: Young Driver KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016	86

All photos by DVRPC staff or sourced from Getty Images unless otherwise noted.

Tables

Table 1.1: Total and Annual Economic Cost of Regional KSI Crashes, 2012–2016	07
Table 1.2: Five-Year Average KSI Rates per County, 2012–2016	08
Table 2.1: New Jersey's Safety Emphasis Areas	18
Table 2.2: Pennsylvania Safety Performance Measures (Statewide Targets)	21
Table 2.3: New Jersey Safety Performance Measures (Statewide Targets)	21
Table 2.4: Sample Volunteer Actions from 2015 Transportation Safety Action Plan Cycle	26
Table 3.1: KSI and Crash Incidence by Emphasis Area, Three-Year Average, 2013–2015	33
Table 3.2: Overlapping Emphasis Area Crashes as Percentage of All Fatal and Injury Crashes by Emphasis Area	36
Table 3.3: Coincidence Ratios by Emphasis Area	37
Table 3.4: Trend in KSI That Occurred at an Intersection	42
Table 3.5: RSTF Key Strategies to Promote Intersection Safety in the Greater Philadelphia Region	43
Table 3.6: Programs and Policies Available in the Greater Philadelphia Region That Help Promote Intersection Safety	44
Table 3.7: Trend in KSI Where Lane Departure Was a Factor	48
Table 3.8: RSTF Key Strategies to Address Lane Departure Crashes in the Greater Philadelphia Region	49
Table 3.9: Programs and Policies Available in the Greater Philadelphia Region That Help Address Lane Departure Crashes	50
Table 3.10: Trend in KSI Where Distracted Driving Was a Factor	55
Table 3.11: Trend in KSI Crashes Where Cell Phone Use Was Reported	56
Table 3.12: RSTF Key Strategies to Address Distracted Driving in the Greater Philadelphia Region	57
Table 3.13: Programs and Policies Available in the Greater Philadelphia Region That Help Address Distracted Driving Crashes	58
Table 3.14: Trend in KSI Where Aggressive Driving Was a Factor	63
Table 3.15: RSTF Key Strategies to Address Aggressive Driving in the Greater Philadelphia Region	64
Table 3.16: Programs and Policies Available in the Greater Philadelphia Region That Help Address Aggressive Driving Crashes	65
Table 3.17: Trend in KSI Where Impaired Driving Was a Factor	69
Table 3.18: RSTF Key Strategies to Address Impaired Driving in the Greater Philadelphia Region	70
Table 3.19: Programs and Policies Available in the Greater Philadelphia Region That Help Address Impaired Driving Crashes	71
Table 3.20: Trend in KSI in Which Pedestrians or Bicyclists Were Involved	75

Table 3.21: RSTF Key Strategies to Promote Pedestrian and Bicyclist Safety in the Greater Philadelphia Region	76
Table 3.22: Programs and Policies Available in the Greater Philadelphia Region that Help Promote Pedestrian and Bicyclist Safety	77
Table 3.23: Trend in KSI That Involved an Older Driver	81
Table 3.24: RSTF Key Strategies to Promote Older Driver Safety in the Greater Philadelphia Region	82
Table 3.25: Programs and Policies in the Greater Philadelphia Region That Help Promote Older Driver Safety	83
Table 3.26: Trend in KSI That Involved a Young Driver	87
Table 3.27: RSTF Key Strategies to Promote Young Driver Safety in the Greater Philadelphia Region	88
Table 3.28: Programs and Policies in the Greater Philadelphia Region That Help Promote Young Driver Safety	89
Table 3.29: Trend in KSI in Which One or More Persons Were Unbelted	90
Table 3.30: RSTF Key Strategies to Address Seat Belt Use in the Greater Philadelphia Region	91
Table 3.31: Programs and Policies in the Greater Philadelphia Region That Promote Seat Belt Use	91
Table 3.32: Trend in KSI That Involved a Heavy Truck	92
Table 3.33: RSTF Key Strategies to Promote Truck Safety in the Greater Philadelphia Region	93
Table 3.34: Programs and Policies in the Greater Philadelphia Region That Promote Truck Safety	93
Table 3.35: Trend in KSI That Involved a Motorcycle	94
Table 3.36: RSTF Key Strategies to Address Motorcycle Safety in the Greater Philadelphia Region	95
Table 3.37: Programs and Policies in the Greater Philadelphia Region That Help Promote Motorcycle Safety	95
Table 3.38: Trend in KSI That Occurred in a Work Zone	96
Table 3.39: RSTF Key Strategies to Address Safety in Work Zones in the Greater Philadelphia Region	97
Table 3.40: Programs and Policies in the Greater Philadelphia Region That Promote Work Zone Safety	97
Table 3.41: Trend in KSI That Involved a Train or Trolley	98
Table 3.42: RSTF Key Strategies to Address Safety for Trains and Trolleys in the Greater Philadelphia Region	99
Table 3.43: Programs and Policies in the Greater Philadelphia Region That Promote Safety for Trains and Trolleys	99

Executive Summary

For most people, a traffic fatality is a tragic story read about in the news. While many have witnessed the aftermath of a crash, others have actually been hurt in a crash or have lost friends or loved ones. Because a severe car crash is something we tend to think happens to other people, it can be hard to believe that in 2016 there were 37,461 people killed in traffic crashes in the United States. **Per capita, the crash fatality rate in the United States is twice as high as that of the European Union, and over three times the rate of the United Kingdom.**¹ Worldwide, 1.25 million people are killed in crashes on average each year. We can do better to make our transportation system safer for everyone.

In 2016, someone was killed or seriously injured in a crash on average every 5.5 hours in the Greater Philadelphia region. Traffic fatalities averaged 368 per year between 2013 and 2015, and in 2016 the trend worsened with 381 people killed and another 1,230 seriously injured in our nine counties. In that same year, 39 percent of the region's 352 municipalities experienced at least one traffic fatality, and 101 occurred in Philadelphia alone. Since 2012, 75 percent of the region's municipalities have experienced at least one fatal crash.

Safe walking is of particular concern in the region: pedestrian fatalities have made up approximately 25 percent, on average, of all fatalities since 2011, noticeably above the national average of 15 percent. Unfortunately, pedestrian fatalities in the region and in the nation rose considerably in 2016. This has led to both Pennsylvania and New Jersey being designated as Pedestrian and Bicycle Safety Focus States—a federal program that provides extra resources to address pedestrian and bicyclist safety. Pedestrians and bicyclists are our most vulnerable road users, and they require extra consideration to ensure our system moves all people safely, not just vehicles. **Every trip begins and ends by walking.**

Achieving a more livable region means making our roads safer for all users. The Delaware Valley Regional Planning Commission (DVRPC) has demonstrated its commitment to this standard by incorporating the zero crash deaths goal into the Connections 2045 Plan for Greater Philadelphia, prioritizing safety projects through the Transportation Improvement Program (TIP) evaluation criteria process, and adopting our state partners' Moving Ahead for Progress in the 21st Century Act (MAP-21) and Fixing America's Surface Transportation Act (FAST Act) safety performance measure targets. Zero traffic fatalities is now the goal for New Jersey, Pennsylvania, and the City of Philadelphia, and it has been incorporated into the mission statement of DVRPC's Regional Safety Task Force (RSTF)-a multi-disciplinary group of safety stakeholders advancing regional road safety. Every DVRPC transportation study, regardless of mode, includes a crash analysis as a standard component. Our work and that of our partners follows the premise that traffic crashes are not accidents; they are preventable incidents that can and must be systemically eliminated.

In this, the fifth edition of the regional safety plan, we have again measured crash data according to the American Association of State Highway Transportation Officials (AASHTO) safety emphasis

> In 2016, someone was killed or seriously injured in a crash on average every 5.5 hours in the Greater Philadelphia region.

1. International Road Traffic and Accident Database; Community Database on Accidents on the Roads of Europe.

areas—a data-driven approach that considers infrastructure and behavioral crash factors. Here we present an expanded list of 13 safety emphasis areas, including a deeper look at eight factors that collectively contribute to 93 percent of the killed and serious injury (KSI) crashes that occur in the region each year. Based on data from 2013 to 2015, those eight critical factors are:

- intersection safety;
- lane departure;
- distracted driving;
- aggressive driving;
- impaired driving;
- pedestrian and bicyclist safety;
- older drivers; and
- young drivers.

Focusing on KSI crashes is an approach that is promoted by the Federal Highway Administration (FHWA) and embraced by both the New Jersey Department of Transportation (NJDOT) and the Pennsylvania Department of Transportation (PennDOT). Fatal crashes can be random in nature, but by combining them with serious injury crashes, trends can be more easily identified.

To assist local road safety planning efforts, this edition of the safety plan presents data at the county and municipal levels for each of the eight first-tier emphasis areas. This approach provides an opportunity to consider limited-access facilities separately by removing that data from the municipal analysis to avoid local overrepresentation. This edition also includes a regional overlap analysis to identify which emphasis areas coincide for more targeted safety interventions.

In the **first chapter**, there is a discussion of crash trends at various levels that includes regional rates by population, road miles, and traffic volume. The chapter ends with a discussion on current trends and future forces that influence road safety.

The **second chapter** presents an overview of DVRPC's coordination with state and federal partners,

the statewide Strategic Highway Safety Planning process, and the requirements of the MAP-21 and FAST Act performance measures. Although DVRPC did not adopt federal safety targets distinct from the two states, the plan does present the region's performance against the five measures: number of fatalities, fatality rate, number of serious injuries, serious injury rate, and number of non-motorized fatalities and serious injuries.

The **third chapter** is dedicated to the regional analysis of the AASHTO emphasis areas. Each includes a map presenting municipal data, emphasis area KSI significance by county, and trend data by county for years 2010 to 2016. This chapter also combines the data previously presented in the former *Analysis of Crashes* report with the improvement strategies found in previous safety plans. The result is a single report that combines the data analysis and policy discussion previously contained in two separate documents.

Vision Zero is an underlying theme in this report. Introduced by Sweden in the 1990s, Vision Zero is an approach to road safety thinking that can be summarized in one sentence: **"no loss of life is acceptable."** What's most important about this approach is the commitment to making the transportation system more forgiving when a crash does occur—humans will make mistakes, but the system should not. This approach is embraced by the many agencies, organizations, and individuals that helped shape this plan.

02 😑 🖗 😑 😫 🔕

CRASH TRENDS IN THE GREATER PHILADELPHIA REGION

Between 2012 and 2016, there were over 7,000 people killed or seriously injured in KSI crashes in the region, amounting to over \$3.9 billion in economic costs over the five-year period.

Measuring Safety in the Greater Philadelphia Region

Using the transportation system should not have inherent safety risks. Yet in 2016, 37,461 people lost their lives in car crashes nationwide, and another 221,000 were seriously injured. These events forever change the lives of their victims, and those who live to tell about it are considered lucky.

Following federal guidance, DVRPC and our state partners now track serious injuries in addition to fatalities resulting from traffic crashes. Preventing fatalities remains the first objective, but eliminating injuries is also a primary goal that is individually tracked as part of the federal government's safety performance measurement process holding states accountable. As our national and regional economies continue to expand, vehicle miles traveled (VMT) have increased. **Our transportation system needs an evolution which will accommodate all users safely, allowing our economy to improve without**

an increase in crash fatalities and injuries as a byproduct.

Over 81,000 roadway crashes occur on average annually in the Philadelphia area. Consistent with national crash trends, the Greater Philadelphia region experienced a notable increase in injuries and fatalities this decade. Data from 2016 marked a four-year high in crash fatalities, claiming the lives of 381 people, and a six-year high of 1,230 people seriously injured. Surprisingly, the total number of injury crashes has been trending downward slightly despite the increases in individuals killed or seriously injured. Figure 1.1 presents safety totals for those killed, those that suffered serious injuries, and KSI the composite metric of both. KSI is used in nearly all analyses contained in this report and is the preferred data point for tracking progress.

Figure 1.1: Fatalities and Serious Injuries from Crashes in the Greater Philadelphia Region, 2007–2016

CRASH TRENDS IN THE GREATER PHILADELPHIA REGION

Sources: PennDOT, NJDOT, DVRPC

Figure 1.2 presents 10 years of KSI rate data for the New Jersey and Pennsylvania counties in the Greater Philadelphia region. Using traffic volume to capture exposure, the KSI crash rate data is consistent with the raw totals. Thus, rates are also increasing. An ideal situation is one where more travel does not lead to more crashes. According to the National Highway Traffic Safety Administration (NHTSA), "The number of vehicle miles traveled on U.S. roads in 2016 increased by 2.2 percent, and resulted in a fatality rate of 1.18 deaths per 100 million VMT—a 2.6 percent increase from the previous year."

The Cost of KSI Crashes

Beyond the immeasurable sorrow that results from a fatal crash are the societal impacts. The financial costs associated with loss of life and even lost quality of life resulting from a KSI crash are in fact measurable. In a 2018 report titled Crash Costs for Highway Safety Analysis, the FHWA categorizes these costs into two types: economic cost and quality-adjusted life years. The economic cost of a crash is the cost that can be directly measured, including costs incurred during the response to the crash, resulting property damage, medical costs, and wages lost as a result of death or serious injury. Quality-adjusted life years accounts for the intangible costs of lost quality of life or emotional pain and suffering for crash victims or their families. The FHWA estimates that these costs together amount to approximately \$11.3 million per fatality and approximately \$655,000 for each serious injury that results from a crash. Considering this on a global scale, the World Health Organization

Sources: PennDOT, NJDOT, DVRPC

states that road traffic crashes cost most countries 3 percent of their gross domestic product.

Table 1.1 shows the economic cost of KSI crashes in the region. Between 2012 and 2016, there were over 7,000 people killed or seriously injured in KSI crashes in the region, amounting to over \$3.9 billion in economic costs over the five-year period. The annual economic cost of KSI crashes in the region was approximately \$789 million, much more than the amount spent on safety investments each year. This amounts to a strong argument in favor of increasing transportation safety funding to address the economic cost borne by the region; however, this point should not obscure the fact that addressing fatalities and serious injuries from crashes is not only an economic consideration, but also a moral imperative for transportation planners and policymakers.

At the federal level, in fiscal year 2016, \$596 million was allocated nationally exclusively to highway

safety, according to the Governors Highway Safety Association (GHSA), although many transportation projects have elements that improve safety. According to the Congressional Budget Office (CBO), the total spending in the 2016 federal budget amounted to \$3.9 trillion. Of this \$3.9 trillion, \$91 billion was allocated to transportation. Therefore, safety funding represents less than 1 percent of the funding for transportation. Clearly, preventing future KSI crashes would have a positive economic effect, and the cost savings justify a greater investment in safety.

	Fatalities	Serious Injuries	KSI (Persons)
2012	402	1,160	1,562
2013	363	1,066	1,429
2014	367	860	1,227
2015	376	978	1,354
2016	381	1,230	1,611
Total	1,889	5,294	7,183
Estimated Economic Cost per Crash Victim*	\$1,722,991	\$130,068	-
Total Economic Cost*	\$3,254,729,999	\$688,579,992	\$3,943,309,991
Annual Economic Cost*	\$650,946,000	\$137,715,998	\$788,661,998

Table 1.1: Total and Annual Economic Cost of Regional KSI Crashes, 2012–2016

*in 2016 dollars

Sources: PennDOT, NJDOT, DVRPC

Regional Statistics and Background

Table 1.2 presents five-year KSI rates by county for three metrics: (1) population, (2) roadway miles, and (3) VMT. Regional numbers are also provided as a baseline against which to compare. KSI rates by VMT are the most commonly used metric and are also endorsed by the FHWA in the Transportation Performance Management (TPM) process for measuring safety. Normalizing by traffic volume keeps the crash experience in context of driving trips. Whereas most of DVRPC's New Jersey counties are below the regional average, DVRPC's Pennsylvania counties are closer to the regional average. Philadelphia is the one true outlier at nearly double the regional number; Philadelphia also stands out statewide.

On balance, Philadelphia's KSI rate per 100,000 people is just under the regional average due to it being the most densely populated county in the region. The more rural counties are the worst performers when considering KSI by population with Bucks, Chester, and Burlington counties all above the regional average of 25.53, and Gloucester being well above at 32.87. Higher average speeds on rural local roads are likely contributing factors to these over-representations.

Table 1.2: Five-Year Average KSI Rates per County, 2012–2016

County	KSI rate per 100,000 people	KSI rate per 100 miles of roadway	KSI rate per 100,000,000 VMT
Bucks	30.19	5.37	4.06
Chester	28.50	4.00	3.44
Delaware	21.82	6.65	3.71
Montgomery	24.23	5.35	3.05
Philadelphia	25.56	15.46	7.32
PA Five Counties Total	25.92	6.90	4.37
Burlington	27.70	4.21	2.65
Camden	23.69	5.88	3.05
Gloucester	32.87	5.59	3.30
Mercer	16.22	3.94	1.69
NJ Four Counties Total	24.73	4.86	2.65
Region	25.53	6.19	3.70

Sources: PennDOT, NJDOT, DVRPC

Crash Rates by Population

Figure 1.3 maps the KSI rate per 1,000 people based on a five-year average by municipality or planning district (in the case of Philadelphia). Unlike Table 1.2, these KSI rates exclude limited-access roads since they tend to skew data for smaller geographies like municipalities. Generally speaking, Figure 1.3 shows how municipalities with the lowest population densities in western Chester and Bucks counties, and eastern Gloucester and Burlington counties have the highest KSI rates by population. The complete dataset for the municipal crash rates is provided as Appendix A.

Figure 1.3: KSI Rate by Municipal or Planning District (Philadelphia) Population, Five-Year Average, 2012–2016

Sources: PennDOT, NJDOT, DVRPC

Crash Rates by Road Miles

Philadelphia's KSI crash rate by lane miles is over twice that of the next closest county in the region (Figure 1.4). This is because many more crashes occur for each mile of roadway in Philadelphia than in the more suburban and rural parts of the region, which have many more miles of roadway for each car traveling on local streets. Aside from Philadelphia, urban parts of Delaware and Camden counties also perform poorly by this measure.

Figure 1.4: KSI Rate by Total Municipal or Planning District (Philadelphia) Lane Miles, Five-Year Average, 2012–2016

Sources: PennDOT, NJDOT, DVRPC

Crash Rates by Volume

Determining crash rates by traffic volume, despite some drawbacks, is generally considered to be the most accurate method used to normalize crash data. Traffic volumes by municipality for this analysis were estimated using traffic simulation model output estimates by road segment, aggregated to the municipal level (Figure 1.5). For some smaller municipalities this method may result in less accurate estimates; for larger municipalities, it is more accurate. Areas of the region with the worst crash rates by this measure include North Philadelphia, parts of eastern Delaware County, western Chester County, and eastern parts of Gloucester and Burlington counties. The split between urban and more rural locations reinforces the lack of bias by development patterns, although other biases are present, particularly the failure to account for pedestrian and bicyclist volumes.

Figure 1.5: KSI Rate by Municipal or Planning District (Philadelphia) Daily VMT, Five-Year Average, 2012–2016

Sources: PennDOT, NJDOT, DVRPC

Limited-Access Network

Limited-access roads were excluded from the municipal crash rates analysis because they tend to skew the crash data in the municipalities that they travel through. Eleven percent of KSI crashes between 2012 and 2016 occurred on limited-access roads, despite limited-access roads making up just 3 percent of the total road miles in the region. Limited-access roads tend to have higher speed limits, as

well as more congestion during peak hours, which can lead to aggressive driving and increased crash severity.

Figure 1.6 shows the KSI crash rate by traffic volume for the limited-access roads in the region. Because the traffic volume on limited-access roads is much higher than on local streets, the rate used is KSI crashes per 100 million VMT instead of per 1 million

Figure 1.6: KSI Rate by VMT for Limited-Access Roads, Five-Year Average, 2012–2016

Sources: PennDOT, NJDOT, NJ Turnpike Commission*

*To calculate VMT, the limited-access network analysis used the most recent Annual Average Daily Traffic (AADT) values that were available from these sources.

VMT. Note that the rate was calculated using the total number of KSI crashes and the average volume along the entire limited-access facility, and therefore the crash rate appears to be uniform for each road. This approach normalizes the rate for the whole corridor to allow for comparison between limited-access facilities in the region. In reality, crashes are distributed unevenly throughout these limited-access roads, and traffic volume fluctuates throughout the facility as well.

US 13 in Bucks County had the highest crash rate of any limited-access road in the region, with a rate of 5.46 KSI crashes per 100 million VMT. On average, Pennsylvania had slightly higher rates along its limited-access roads than New Jersey did, even along those roads that crossed through both states. I-676 in Pennsylvania has a rate of 2.95 KSI crashes per 100 million VMT, while I-676 in New Jersey has a slightly lower rate of 2.78. After US 13 and I-676, however, the New Jersey Turnpike has the third highest rate of 2.65 KSI crashes per 100 million VMT. I-95 in Pennsylvania also had a relatively high rate of 1.49 KSI crashes per 100 million VMT.

A common characteristic of the limited-access facilities with higher KSI rates is that they carry both regional and interstate traffic, e.g., I-95 and the New Jersey Turnpike. Through-traffic motorists may not be prepared to navigate local conditions that regional drivers are accustomed to. Roadway configuration variations combined with a mix of interchange types, especially when densely located, can lead to higher crash trends as these changing conditions demand more from drivers. I-76 is an example of a limitedaccess road with multiple interchange types that handles high-volume traffic from other regionally significant facilities and mixes local and interstate travelers. A hot-spot analysis of these limitedaccess roads can help to identify interchanges or other potentially problematic locations along these facilities where systemic improvements can be made to prevent crashes and reduce crash severity.

Current Trends and Future Forces

Technology is featured as a key "future force" in DVRPC's Connections 2045 Plan for Greater Philadelphia. Among other areas of transportation and regional planning, advancements in technology both inside and outside of the vehicle are having a significant influence on crash safety, both negative and positive. As humans become ever more connected, our increasing level of distraction, or conversely, our hyper-focused attention to screens, is resulting in grave consequences when operating a motor vehicle is the de-prioritized task. According to NHTSA, in 2016, distracted driving crashes were the cause of 3,450 fatalities, almost 10 percent of the national total. Concerningly, some studies suggest distracted driving data is severely underreported so we may not fully understand the scope of this challenge. At the same time, it has become increasingly common to point to distraction as a primary cause for non-motorized user crashes; however, there is not currently data to back up the phenomenon of the "distracted pedestrian" as a growing trend. The best advice is two-fold: for vulnerable users, be cautious when walking or biking; and for drivers, with great power comes great responsibility.

On the upside, the technological advancement toward an autonomous vehicle society is starting to make cars smarter, helping protect humans from themselves. According to NHTSA, "human choices are linked to 94 percent of serious crashes."² Level 5 automation-driverless vehicles operating on any road in any condition, reliant only on humans for entering a destination-is purported to be many decades away, if actually achievable. In the meantime, more and more auto manufacturers are offering smart safety technologies as standard vehicle equipment, even on more affordable models. Technologies like front-end collision avoidance and lane-keeping assist are designed to take over where humans cannot, or as a result of poor choice, do not prevent a crash from happening.

These technological forces have already changed the way we travel, as well as the way we live, and will

2. www.nhtsa.gov/press-releases/usdot-releases-2016-fatal-traffic-crash-data

continue to do so for the foreseeable future. Despite technological progress toward achieving safety goals, we must continue to make the best use of currently available tools, to promote and project safe behaviors, and to support legislation that advances a safety culture and the only defensible goal: zero deaths.

Vision Zero: The New Way

Vision Zero is certainly a current trend and may also be a future force. Introduced in Sweden in the 1990s, Vision Zero is an approach to road safety thinking, that can be summarized in one sentence: "No loss of life is acceptable." Thus, the goal of Vision Zero is to eliminate traffic fatalities and serious injuries.

Vision Zero recognizes that human beings make mistakes, and that the transportation system can be designed to minimize the severity of those mistakes. This philosophy does not relieve people of making the safest choices. Instead it promotes engineering, education, and collaboration to address system needs that, when met, will protect all users.

Cities across America and throughout the world, as well as some nations, have adopted Vision Zero, or one of its sister movements: Toward Zero Deaths, and the Road to Zero Coalition. The FHWA, New Jersey, and Pennsylvania have all incorporated Toward Zero Deaths into their safety goals. In 2016, City of Philadelphia mayor Jim Kenney signed a Vision Zero executive order, joining New York City, Los Angeles, and Boston, among others, in their Vision Zero efforts. Since publishing the 2015 Transportation Safety Action Plan, DVRPC has embraced the zero goal, as has the RSTF.

Achieving zero deaths starts with a change to the way we think about crashes. Even small paradigm shifts like replacing the word "accident" with the word "crash" embraces the idea that these events are preventable. Through smarter and better-designed infrastructure and vehicles, safer work zones, and increased walkability and bike-ability, we are promoting safe and equitable access for all ability levels systemwide, helping us move closer to zero deaths.

Is Vision Zero also a future force? When leaders embrace this philosophy they are making a

commitment to prioritize safety, a place once held by other goals like congestion relief. This shift in thinking can bring currently unanticipated benefits to society. If America truly commits to eliminating fatalities, which totaled 37,461 deaths in 2016 alone, the cost savings and financial benefit to society would be unprecedented. If no lives were lost in the region in 2016, at a minimum it would mean 381 people would still be here, 381 fewer emergency response calls would have been dispatched, and countless hours of crash-related congestion would never have occurred, just to name a few of the more tangible benefits.

Thinking more broadly, safety and health have improved for people in many aspects of life. For example, in the recent past, exposure to cigarette smoke was an unavoidable fact of public life. To the amazement of many, that has changed, and society is better for it. Children born in the region today will likely never have to breathe second-hand smoke. These societal changes typically come from concerned individuals in pursuit of a better way.

Eliminating crash fatalities and lessening crash severity is consistent with public health goals designed to keep residents healthy and working, yielding lower medical costs. Yet, there is still a pervasive complacency about the inherent safety risks associated with driving a car, walking, or biking. America loses about 101 people to car crashes per day across its 50 states; it is a silent killer. Similar death rates for any other mode—airplanes, trains, ferries—would elicit a public outcry. Vision Zero is that outcry, and the time is now to eliminate fatal and serious injury crashes.

Vision Zero recognizes that humans make mistakes; our transportation system should minimize the severity of those mistakes.

SAFETY PLANNING IN THE GREATER PHILADELPHIA REGION

The Greater Philadelphia region is plagued by many of the same safety priority issues faced statewide by Pennsylvania and New Jersey, in addition to uniquely regional concerns.

Creating a Safety Plan

This is the fifth edition of the Transportation Safety Analysis and Plan (TSAP; formerly the Transportation Safety Action Plan) for the Greater Philadelphia region, building on over a decade's worth of data-driven analysis and coordination among traditional and non-traditional partners and focused on improving transportation safety for all road users. In order to guarantee the most useful product, each TSAP is designed and developed in coordination with state and federal partners to ensure a consistent approach and to align goals across agencies. The following section presents the federal requirements for transportation safety planning, a short overview of both the Pennsylvania and New Jersey Strategic Highway Safety Plans (SHSP), followed by DVRPC's approach where it overlaps with the state plans.

Federal Regulations

The Fixing America's Surface Transportation (FAST) Act (December 2015) reinforced the safety priorities articulated in MAP-21 (2012). Each state department of transportation (DOT) is required to develop a data-driven SHSP in coordination with their planning partners in order to receive federal Highway Safety Improvement Program (HSIP) funding. DVRPC is a partner in planning for the Philadelphia metropolitan region with PennDOT, NJDOT, and the FHWA, along with a multi-disciplinary group of stakeholders.

The data-driven analysis required for an SHSP commonly begins with the 22 national safety emphasis areas described in the AASHTO Strategic Highway Safety Plan, published in 1997 and updated in 2004. Both New Jersey and Pennsylvania used this approach, and this is the fifth edition of DVRPC's TSAP built on emphasis area data measurement. AASHTO's guidance on use of the emphasis areas approach provides states the freedom to combine similar emphasis areas into larger categories, organize them into tiers defined by expected benefits, and even define new emphasis areas.

New Jersey's Approach (Updated 2015)

With the 2015 update of their SHSP, New Jersey announced their commitment to the Towards Zero Deaths movement, specifically stating that "it is no longer acceptable to say that traffic crashes and the resulting injuries and fatalities are the price we pay for mobility." The update process engaged traditional stakeholders, including metropolitan planning organizations (MPO) and county partners, as well as less traditional partners, like advocacy groups and the medical community.

New Jersey's refresh of the 22 AASHTO emphasis areas was based on data for the five-year period of 2008 to 2012. The final plan addresses 16 safety emphasis areas organized into these AASHTO categories: Drivers, Special Users, Vehicles, Highways, and Other (see Table 2.1). The following emphasis areas were identified as first priority of three priority levels: Lane Departure, Drowsy and Distracted Driving, Aggressive Driving, Intersections, Pedestrians and Bicyclists, and Mature Drivers. New Jersey used the following crash thresholds to determine the priority levels:

- First Priority: >2,000 KSI crashes;
- Second Priority: 1,000 to 2,000 KSI crashes;
- Third Priority: <1,000 KSI crashes.

DVRPC participates in quarterly MPO coordination meetings hosted by NJDOT designed to track safety project progress, discuss updates, and strategize new approaches to expanding the scope and breadth of the HSIP program. Each New Jersey MPO facilitates a competitive HSIP local safety program, which awards safety project funding on an annual basis. Through this program DVRPC works closely with local roadway owners to identify HSIP-eligible locations, analyze safety data, and serve as a liaison between locals and state and federal partners to advance projects to implementation.

Categories	Safety Emphasis Areas
Drivers	Drowsy and Distracted Aggressive Driving (including Speeding) Impaired Driving Mature Drivers Teen Drivers Unbelted Vehicle Occupants Unlicensed Drivers
Special Users	Pedestrians and Bicyclists
Vehicles	Motorcyclists Heavy Vehicles
Highways	Lane Departure Intersections Work Zones Vehicle-Train Collisions
Other	Improved Data Analysis Driver Safety Awareness

Table 2.1: New Jersey's Safety Emphasis Areas

Source: NJDOT

Pennsylvania's Approach (Updated 2017)

Completed in 2017, Pennsylvania describes this SHSP update as a "blueprint to reduce fatalities and serious injuries on Pennsylvania roadways and targets priority Safety Focus Areas (SFAs) that have the most influence on improving highway safety throughout the state," as depicted in Figure 2.1.

The focus areas are prioritized according to these criteria:

- potential for overall fatality reduction (with execution of improvements);
- number of fatalities (based on historic five-year average);
- cost effectiveness (cost/benefit);
- ease of strategy implementation within focus area (proven countermeasures); and
- resources (funding, time, partners).

Based on crash data for years 2011-2015, this

iteration of Pennsylvania's SHSP continues their Toward Zero Deaths approach to traffic safety, originally established in the 2012 SHSP. The 2017 plan update engaged a wide variety of stakeholders from the public, non-profit, and private sectors to ensure a multi-disciplinary approach.

Pennsylvania is also supporting the NHTSA-led Road to Zero Coalition's goal to end roadway fatalities within 30 years, although their plan establishes a more specific five-year goal to reduce the current number of fatalities and serious injuries by 120 and 305, respectively. Their crash reduction fatality goal is stated to be 2.5 percent per year.

DVRPC maintains ongoing collaboration with PennDOT's District 6-0 office to assist with tracking progress, helping identify new HSIP-eligible projects, and coordinating with county partners. District 6-0 is also engaged in DVRPC's RSTF and at the transportation study level as needed.

18 🗇 🖗 😑 🤮 🚯

*Figure 2.1: Pennsylvania's Safety Focus Areas (Not Including Traffic Records Data or Emergency/Incident Influence Time)**

*Based on historic 5-year average (2011-2015)

Source: PennDOT

DVRPC's Approach (Updated 2018)

In 2016 there were over 81,000 crashes in the nine-county Greater Philadelphia region, which claimed the lives of 381 people, and injured another 43,067. For context, the Greater Philadelphia region includes five of Pennsylvania's 67 counties representing just 5 percent of the state's land area, but 32 percent of the population, and 29 percent of the crashes (based on 2016 Census and crash data). The four New Jersey counties (out of 21) represent a greater portion of the state's land area at 21 percent, accounting for 18 percent of the population, and 17 percent of the crashes (based on 2016 Census and crash data).

The Greater Philadelphia region is plagued by many of the same safety priority issues faced statewide by Pennsylvania and New Jersey, in addition to uniquely regional concerns. For instance, pedestrian and bicyclist crashes are overrepresented in the Greater Philadelphia region. Thus, DVRPC's TSAP is designed to support and enhance the work of each state. The **Regional Safety Task Force** (RSTF), a multidisciplinary stakeholder group founded in 2005, provided substantial guidance in the development of each TSAP to date, including this iteration. The RSTF meets quarterly, focusing on a different safety emphasis area that includes the development of actions to improve safety. The RSTF includes representatives from federal, state, county, and municipal governments, plus private sector, advocacy groups, and the general public. See Appendix B for the list of members and agencies actively involved in shaping this safety plan.

This safety plan seeks to advance DVRPC's overall safety goals as set out in *Connections 2045 Plan for Greater Philadelphia. Connections 2045* is the long-range plan for the Greater Philadelphia region; it presents a regional vision around five core principles, and identifies strategies to achieve that vision. Transportation safety is prioritized across the plan and integrated into each of the core principles: Sustain the Environment; Develop Livable Communities; Expand the Economy; Advance Equity and Foster Diversity; and Create an Integrated, Multimodal Transportation Network. The Plan's approach to increasing safety for both motorized and non-motorized users advances the U.S Department of Transportation's Key Planning Factors and specifically identifies the goal of moving toward zero transportation deaths within the transportation principle (Create An Integrated, Multimodal Transportation Network). DVRPC's Transportation Improvement Program (TIP) evaluation criteria—a data-informed investment decision tool uses safety as the second-most heavily weighted criteria, designed to prioritize transportation projects that advance the region's safety goal.

Setting Performance Measures

In December 2015, the federal transportation funding and authorization legislation called Moving Ahead for Progress in the 21st Century Act (MAP-21) was replaced by the FAST Act—Fixing America's Surface Transportation Act. The FAST Act authorized \$305 billion over fiscal years 2016 through 2020 and carried forward and expanded MAP-21's transportation performance management (TPM) requirements. These changes require the use of performance-based approaches in metropolitan and statewide transportation planning to measure if goals are being met.

TPM regulations hold state DOTs, MPOs, and transit agencies to a level of performance accountability. In particular, state DOTs must establish baseline conditions and performance targets, demonstrate acceptable progress in meeting those targets, and update them annually.

FAST Act Performance Measures

Safety transportation performance measures were the first to advance, with states required to submit their targets to federal partners on August 1, 2017, although requirements, timelines, and penalties are different for MPOs. Specifically, MPO's have the option to adopt state targets or establish their own. DVRPC elected to support state targets established by the Pennsylvania and New Jersey Departments of Transportation rather than establish regional targets which incidentally would consist of unique targets for our New Jersey and Pennsylvania counties—a requirement of the regulation. MPOs were required to report their preference six months after states reported their targets.

The safety performance measures track progress using five-year rolling averages for the following five metrics:

- Number of Fatalities;
- Rate of Fatalities per 100 Million VMT;
- Number of Serious Injuries;
- Rate of Serious Injuries per 100 Million VMT; and
- Number of Non-motorized Fatalities and Non-motorized Serious Injuries (essentially bicyclists and pedestrians killed or seriously injured).

The data source for fatalities is NHTSA's Fatality Analysis Reporting System (FARS), and each state uses their own data for serious injuries. State targets are applicable to all public roads.

State Safety Targets

Considerable coordination occurred among DVRPC, MPO partners, and state and federal partners, to establish the state targets in both New Jersey and Pennsylvania. This collaboration, informed by a data-driven analysis, is critical for guiding planning and engineering to ensure that transportation safety is held as a high priority for each state.

Pennsylvania's initial targets were designed to reflect their 2017 SHSP goal of reducing KSI by 2 percent. Table 2.2 presents Pennsylvania's TPM baseline and targets.

New Jersey's safety target-setting exercise proceeded in a collaborative way similar to Pennsylvania's and with careful consideration of previous trends, recently built projects, and the current socioeconomic climate. Table 2.3 presents New Jersey's TPM baseline and targets.

	Five-Year Rolling Averages		
	TARGET	BASELINE	
Performance Measure	2014-2018	2012-2016	
Number of Fatalities	1,177.6	1,220.2	
Fatality Rate	1.161	1.220	
Number of Serious Injuries	3,799.8	3,434.0	
Serious Injury Rate	3.746	3.433	
Number of Non-motorized Fatalities and Serious Injuries	654.4	602.4	

Table 2.2: Pennsylvania Safety Performance Measures (Statewide Targets)

Source: PennDOT

Table 2.3: New Jers	ey Safet	y Performance Measures	(Statewide	Targets)
---------------------	----------	------------------------	------------	----------

	Five-Year Rolling Averages		
	TARGET	BASELINE	
Performance Measure	2014-2018	2012-2016	
Number of Fatalities	586.0	571.0	
Fatality Rate	0.778	0.762	
Number of Serious Injuries	1,105.0	1,135.6	
Serious Injury Rate	1.467	1.516	
Number of Non-motorized Fatalities and Serious Injuries	386.5	390.3	

Source: NJDOT

Safety Performance Measures in the Greater Philadelphia Region

Figure 2.2 shows the five-year rolling averages for fatalities and serious injuries in the Greater Philadelphia region. The first five pairs of columns correspond to the five-year rolling averages of fatalities and serious injuries that were reported in the 2015 TSAP, beginning with the 2005–2009 five-year average and ending with the 2009–2013 five-year average. The current iteration of the plan covers the rolling averages from the 2008–2012 five-year average to the 2012–2016 five-year average.

In this update we see that the five-year rolling averages for fatalities and serious injuries have steadily decreased over the last eight years. The 2011–2015 and 2012–2016 five-year averages, however, saw increases in fatalities and serious injuries, respectively. This reflects a slowdown and reversal of the gains in decreasing severe crashes that were made in the period following the financial crisis in 2008, when the national economic downturn had a negative impact on traffic volume which corresponded with a drop in crashes, both regionwide and nationwide.

Sources: PennDOT, NJDOT, DVRPC

Figure 2.3 shows the five-year rolling averages for rates of fatalities and serious injuries per 100 million VMT in the Greater Philadelphia region. The crash rate is useful because it accounts for changes in travel activity, which can have a significant impact on the number of severe crashes. Figure 2.3 also divides the five-year averages into their corresponding TSAPs. The rate of fatalities and serious injuries, like the total number of fatalities and serious injuries, fell throughout the rolling averages corresponding to the 2015 TSAP. The current update, however, has seen the rate of fatalities plateau. Serious injuries continued to fall for the first three rolling averages of the current TSAP cycle, but, like fatalities, plateaued in the final two rolling averages.

Figure 2.3: Rate of Fatalities and Serious Injuries by 100 Million VMT, Greater Philadelphia Region, Five-Year Rolling Averages

Sources: PennDOT, NJDOT, DVRPC

SAFETY PLANNING IN THE GREATER PHILADELPHIA REGION

Figure 2.4 shows the five-year rolling average of non-motorized fatalities and serious injuries, specifically pedestrian and bicyclist KSI, also known as vulnerable users. Like the five-year rolling average numbers and rates of all KSI crashes, non-motorized KSI had generally been decreasing across the years covered in the 2015 TSAP (there was an increase between the first and second rolling averages). This pattern continued during the first three rolling averages of the current TSAP cycle, until the final five-year average in which the non-motorized KSI number increased slightly. If national trends continue

to play out locally, it is likely that the non-motorized KSI five-year averages will continue to trend upward over the next few years. Tracking this data for the Greater Philadelphia region is especially important because both New Jersey and Pennsylvania are FHWA Pedestrian and Bicycle Safety Focus States. This is a designation that identifies states for which these crash types are higher than the national average, and provides additional resources to help address the problem.

Figure 2.4: Non-Motorized Fatalities and Serious Injuries, Greater Philadelphia Region, Five-Year Rolling Averages

Sources: PennDOT, NJDOT, DVRPC

Regional Safety Task Force

The RSTF is a multi-disciplinary team of transportation safety professionals and stakeholders that promotes transportation safety in the Greater Philadelphia region and offers guidance for DVRPC's efforts. The goal of the RSTF is to reduce roadway crashes and eliminate serious injuries and fatalities from crashes in the region. Established in 2005, the task force seeks to build and maintain effective partnerships to improve safety for all users of the regional transportation system. The RSTF meets quarterly focusing on one of AASHTO's safety emphasis areas through presentations by practitioners and subject matter experts. Each meeting also includes small group discussions targeted at identifying action items that help improve safety on that meeting's topic.

The RSTF has two objectives that provide specifics about how to accomplish its goal and mission. They are:

- Build, maintain, and leverage partnerships among both traditional and non-traditional transportation safety stakeholders.
- Increase the effectiveness of the RSTF through strategies and actions.

In 2017, following similar resolutions by key member governments, including the City of Philadelphia, PennDOT, and NJDOT, the RSTF adopted Vision Zero as the guiding principle of the task force. This led immediately to the RSTF adopting a new goal focused on the elimination of deaths and serious injuries from crashes in the Greater Philadelphia region. It also refocuses the task force's work onto the crashes that lead to the greatest KSI, in keeping with shifts in transportation safety data analysis and strategies being adopted at the local, state, and federal levels.

Volunteer Actions

RSTF members volunteer to take on "action items" that will address the crash trend arising from the emphasis area focus of each meeting. Examples of action items from each emphasis area meeting over the last cycle are included in Table 2.4 on the following pages (the current cycle concludes in 2019). Action items typically revolve around information sharing or small analysis projects. A new cycle of emphasis

area meetings and accompanying action plan development is underway. Action items are tracked and reported on at each RSTF meeting.

Special Project: Speed Management

In collaboration with the RSTF, DVRPC staff developed a Municipal Implementation Tool (MIT) to inform municipalities about the dangers of speeding (see Figure 2.5). The MIT includes its contributing factors, and strategies to reduce speeding, as well as where these strategies have been implemented in the region. The MIT is available as a free download from DVRPC's products web page.

In 2016, 28 percent of traffic fatalities in the Greater Philadelphia region were speeding-related. While speeding is not one of the AASHTO emphasis areas, it is an aggressive driving behavior, and contributes to more traffic fatalities in the region than impaired driving. Speeding-related crashes are typically lethal compared to lower-speed crashes, because speeding increases both one's chances of being involved in a crash and the likelihood that a crash will be fatal. A 5 percent increase in average speed has been shown to increase traffic fatalities by 20 percent overall.

Figure 2.5: Speeding MIT

Source: DVRPC

Table 2.4: Sample Volunteer Actions from 2015 Transportation Safety Action Plan Cycle

<i>Volunteer Action Item</i>	Lead Person (Agency)	Action Update
INTERSECTION SAFETY: Octob	per 2016	
Create and distribute a brochure on intersection safety when an ambulance approaches.	Peggy Schmidt (Partnership TMA)	Action completed. The brochure was drafted and distributed to relevant parties.
Share information about connected vehicles, including demo video.	Paul Carafides (DVRPC)	Action completed. Information was shared at a Connected Vehicle Technology demonstration event held on August 30, 2017, at Penn State's Larson Institute in conjunction with the Institute of Transportation Engineers Annual Meeting.
SENIOR DRIVERS: June 2016		
Identify nodes (specifically intersections) that are heavily used by seniors.	Janet Arcuicci (Montgomery County Planning Commission)	Action completed. Ms. Arcuicci provided DVRPC with a list of intersections near senior developments for DVRPC to map.
Talk to NJDOT and report back with ways that NJDOT can partner on senior driver safety issues, especially extending crossing times at intersections.	Bill Beans (MBO Engineering)	Action completed. Mr. Beans spoke with NJDOT staff and reported that they go well beyond Manual of Uniform Traffic Control Devices minimum design standards to improve safety for seniors and all users, including the installment of enhanced crosswalk striping to increase pedestrian and intersection visibility.
AGGRESSIVE DRIVING: Decem	ber 2015	
Share AAA's brochure on procedures to take if a vehicle breaks down on a highway.	AAA Mid-Atlantic, DVRPC	Action completed.
YOUNG DRIVERS: June 2015		
Identify and map locations with high young driver populations and significant crash trends for consideration of improvements.	Vince Cerbone (PennDOT District 6)	Action completed. Mr. Cerbone developed a map for distribution.

<i>Volunteer Action Item</i>	Lead Person (Agency)	Action Update
DISTRACTED/IMPAIRED DRIVING: March 2015		
Track Pennsylvania House Transportation Subcommittee actions on driving under the influence (DUI) legislation.	Ryan McNary (PennDOT)	Action completed. Mr. McNary provided a list of bills compiled by Senator Rafferty's office.
UNBELTED: December 2014		
Report statistics for any non- traditional seatbelt education programs.	Sarah Oaks (DVRPC)	Action completed. Ms. Oaks reported on the Delaware County TMA's High School Seatbelt Challenge, which has from three to 11 participating schools. The challenge is also done in conjunction with the Survival 101 program taught by police officers trained by Buckle Up PA instructors. There is typically a 20–30% increase in seatbelt use over the course of the school year.
PEDESTRIAN SAFETY: September 2014		
Look into adding Safe Passage bill to the New Jersey Department of Highway Traffic Safety agenda.	Violet Marrero (NJDHTS)	Action completed. Ms. Marrero provided the Safe Passing bill (A1577/1600) to the Governor's Highway Traffic Safety Policy Advisory Council, where it was discussed.

Source: DVRPC

REGIONAL SAFETY EMPHASIS AREAS

When combined, the first- and second-tier emphasis areas account for 98 percent of KSI crashes in the region.

Introduction

The regional safety emphasis area analysis identifies the AASHTO emphasis areas with the greatest impact on KSI in the Greater Philadelphia region. Unlike previous iterations of the plan, all emphasis areas measureable with crash data are included in this version, which is consistent with a renewed focus on addressing every single crash that results in a fatality or serious injury.³ Nevertheless, more attention is devoted to those that lead to the greatest number of KSI crashes, as well as those that were selected for particular consideration by members of the RSTF. Ultimately, through collapsing categories and following guidance from state partners, eight emphasis areas were selected for a deeper analysis, while five additional emphasis areas are considered in shorter form.

Methodology

The AASHTO emphasis areas analysis uses a data-driven process to identify the contributing factors involved in the greatest number of KSI in the region. The analysis uses database "flags" intended to identify contributing factors in crashes included on police reporting forms (see Appendix D). In some cases, the application of a flag to a crash may not be as clear cut as in other cases. For instance, while an "older driver" flag is assigned based on the age of the driver and is therefore clearly identifiable, "driver inattention" is dependent on whether police identify this on their state's crash reporting form and may differ substantially depending on state law, circumstances of the crash, and even discretion, among other factors. The analysis uses a three-year dataset of 2013-2015 data, which picks up after the final year of the previous TSAP cycle (2010-2012).

The following questions were answered for each of the eight top tier emphasis areas:

How many KSI were there from crashes for which that emphasis area was a contributing factor, by county? What percentage of all the KSI from crashes in a county had a specific emphasis as a contributing factor?

The answers to these questions are presented in a single figure to assist the reader in drawing conclusions. The number of KSI for which the given emphasis area was a contributing factor is shown as a bar for each county. The dot above the county represents the percentage of all crash KSI in that county to which the emphasis area was a contributing factor. A county might have relatively few KSI in a given emphasis area compared to other counties, but the percentage of KSI where that emphasis area was a contributing factor may be very high, identifying that emphasis area as a priority for that county.

What is the rate (by total traffic volume) of crashes for which that emphasis area was a contributing factor, by municipality?

The maps for each emphasis area are color coded by the rate of crashes involving that emphasis area, normalized by an estimated traffic volume for each municipality. The full table of estimated volume and number of crashes by municipality is available as Appendix A. The map gives a more fine-grained analysis of where certain emphasis areas are most prevalent and can help municipalities to focus resources on the emphasis areas of greatest concern to them.

3. Of the 22 AASHTO emphasis areas, only 17 are directly measurable with crash data.

What additional emphasis areas overlap more frequently with the emphasis area?

Since a single crash can involve more than one emphasis area, crash data was analyzed to determine what, if any, other emphasis areas disproportionately overlap with the emphasis area. See "Overlapping Emphasis Areas" below for more discussion of this topic.

How are the number of fatalities, serious injuries, and KSI crashes changing over time?

Seven years of data are provided in the accompanying tables for historical context.

What strategies and programs exist to address this emphasis area?

Strategies identified by the RSTF to address each emphasis area are listed in order of priority and grouped by strategy type: education, engineering, enforcement, and policy. A sample of existing programs and policies in the Greater Philadelphia region to address each emphasis area is also listed.

Findings

Table 3.1 presents the results of the emphasis area analysis for the region, sorted by total regional KSI. Total crashes associated with each emphasis area are provided to demonstrate the relative crash exposure of each. This table was presented to the RSTF at the July 2017 meeting; it was accepted by the task force and became the foundation for this plan and a subsequent strategies development session. Note that a 2014 rank is missing for seven of the emphasis areas because they were not included in the 2014 iteration of the plan.

"Intersection Crash" was the emphasis area involved in the most KSI in both the Pennsylvania and New Jersey counties in the Greater Philadelphia region. Figure 3.1 shows how the intersection safety emphasis area is the most critical emphasis area to the region in terms of both KSI and total number of crashes. By showing both the number of KSI as well as the number of total crashes, Figure 3.1 shows the relative importance of each emphasis area in the region by both crash severity (which colored band it falls into), and crash frequency (the size of the gray circle). For instance, the chart demonstrates how "Impaired Driver" and "Driver Inattention" result in a similar number of KSI, but the universe of all "Driver Inattention" crashes is far larger. This speaks to both the likelihood that a given crash will lead to a KSI and the size of the problem that must be addressed ("Driver Inattention" is, in fact, likely underreported and thus should be represented by an even larger circle than is shown in Figure 3.1 if better data collection were possible).

32 😂 🖗 🖨 🈫 🚯

AASHTO Emphasis Area	Total Crashes		KS	l (Persons)	2014 Rank
		PA	NJ	Total	
AASHTO #17: Intersection Crash	28,604	372	135	507	3
AASHTO #16: Leave Roadway	15,876	317	133	449	2
AASHTO #15: Run Off Road	12,789	284	126	410	2
AASHTO #08: Unbelted	4,173	252	77	329	5
AASHTO #06: Driver Inattention	27,344	55	193	249	4
AASHTO #05: Impaired Driver	3,945	173	74	247	4
AASHTO #09: Pedestrian	2,800	185	62	247	6
AASHTO #03: Older Drivers	12,839	154	89	243	7
AASHTO #04: Aggressive Driving	16,394	87	156	243	1
AASHTO #11: Motorcyclist	1,195	136	40	175	
AASHTO #01: Young Drivers	12,775	107	55	162	8
AASHTO #18: Head On/Cross Median	1,994	96	39	135	
AASHTO #12: Heavy Truck Related	4,696	53	36	89	
AASHTO #10: Bicycle	993	33	8	41	
AASHTO #19: Work Zone	1,800	16	7	23	
AASHTO #02: Unlicensed	1,395	16	7	22	
AASHTO #14: Train and Trolley	37	2	1	2	

Table 3.1: KSI and Crash Incidence by Emphasis Area, Three-Year Average, 2013–2015

Sources: PennDOT, NJDOT, DVRPC

Figure 3.1: KSI and Crash Incidence by Emphasis Area, Three-Year Average, 2013–2015

Organizing and Prioritizing

Based on guidance from the crash data analysis, the SHSPs from PennDOT and NJDOT, and members of the RSTF, the 17 AASHTO emphasis areas were distilled into eight first-tier and five second-tier groupings. This allowed for all areas to be considered, at least to some extent. The first-tier emphasis areas, which account for 93 percent of all KSI crashes in the region, are:

Aggressive Driving;

Distracted Driving (or Driver Inattention);

- Impaired Driving;
- Pedestrian and Bicyclist Safety (combining the Pedestrian and Bicycle emphasis areas);
- Older Drivers; and
- Young Drivers.

- Intersection Safety;
- Lane Departure (combining the Leave Roadway, Run Off Road, and Head On/Cross Median emphasis areas);

34 🚍 🖗 🚍 🚇 😣

When combined, the first- and second-tier emphasis areas account for 98 percent of KSI crashes in the region. The second-tier emphasis areas are:

- Seat Belt Use (or Unbelted);
- Heavy Truck-Related;
- Motorcycle;
- Work Zone; and
- Train and Trolley.

New for this Edition

This edition represents a significant departure from previous iterations of the TSAP in several respects. First and foremost, this is the first plan to consider all the emphasis areas. This enables the plan to incorporate recommended strategies for all emphasis areas and to show the year-over-year trend. First-tier emphasis areas received greater attention; however, all emphasis areas are addressed. (The one exception is "Unlicensed," which is also de-emphasized in the NJDOT SHSP.)

In addition, several emphasis areas were moved into newly created categories. The "Leave Roadway," "Roadside Safety," and "Head On/Cross Median" emphasis areas were all combined into a single category called, "Lane Departure." There is a significant amount of overlap between these emphasis areas, both in the strategies to address them and in the crashes for which they are flagged. Conversely, "Distracted Driving" and "Impaired Driving" had previously been combined into a single category; in this iteration of the TSAP they are disaggregated. "Pedestrian" and "Bicycle" are combined into a single category called "Pedestrian and Bicyclist Safety." While these crashes rarely overlap in reported data, they share many features as "vulnerable users" and are often considered together in safety planning. Finally, "Unbelted" is included, but as a second-tier emphasis area called "Seat Belt Use." While "Unbelted" results in a high number of KSI, the total number of crashes is relatively small and the emphasis area was not selected as a topic for special consideration by the RSTF.

The 13 emphasis areas were presented to the RSTF at a Special Strategies Session on July 25, 2017. At the session, all 13 emphasis areas were discussed and strategies developed to address the crash experience corresponding to each one in the region. Those strategies are presented for each emphasis area.

Overlapping Emphasis Area Analysis

Often a crash will involve more than one emphasis area. For example, an impaired driving crash could also involve a young driver. Identifying overlaps between emphasis areas allows planners to pool resources and make strategic investments in countermeasures that are proven to address both emphasis areas.

In order to determine how much each emphasis area overlaps with the others, the number of fatal and injury crashes in the region that fell into any two emphasis areas was calculated (see Appendix C). This analysis includes all injury crashes rather than just serious injury crashes, in order to create a larger dataset from which to draw conclusions. Next, the percentage that these coinciding crashes made up of the total number of crashes in each emphasis area was calculated (see Table 3.2).

Note that the percentages add up to more than 100 percent for each emphasis area because a crash can involve more than two emphasis areas. For example, a crash could involve both an unbelted driver and a pedestrian, while also occurring in an intersection. Moreover, note that the x-axis includes only the first-tier emphasis areas, while the y-axis includes both the first-tier and second-tier emphasis areas.⁴ 88 percent of all fatal and injury crashes in the region involve at least one first-tier or second-tier emphasis area. The emphasis areas on the y-axis are grouped into collision type, road user, and dangerous behavior emphasis areas.

4. Second-tier emphasis areas were only compared with first-tier emphasis areas and not with each other.

These percentages were then divided by the percentage of all fatal and injury crashes that an emphasis area makes up, thus creating a "coincidence ratio" (see Table 3.3). A coincidence ratio above 1 means that two emphasis areas coincided more frequently than the emphasis area's percentage of all fatal and injury crashes, while a

coincidence ratio below 1 means that two emphasis areas coincided less frequently. For example, aggressive driving crashes make up 17.2 percent of all fatal and injury crashes in the region, but 20.6 percent of fatal and injury crashes involving older drivers. Therefore, aggressive driving and older drivers have a coincidence ratio of 1.20. In Table 3.3,

Table 3.2: Overlapping Emphasis Area Crashes as Percentage of All Fatal and Injury Crashes by Emphasis Area

Emphasis Area	Inter- section Safety	Lane Departure	Older Drivers	Young Drivers	Pedestrian & Bicyclist Safety	Impaired Driving	Distracted Driving	Aggressive Driving
Collision Type								
Intersection Safety	—	23.2%	52.1%	47.3%	56.5%	33.7%	39.2%	44.9%
Work Zone	0.8%	1.9%	1.8%	1.7%	0.8%	2.0%	1.6%	3.4%
Lane Departure	11.4%	_	14.0%	22.7%	4.1%	49.9%	20.0%	23.6%
Road User								
Older Drivers	19.6%	10.7%	_	10.9%	10.7%	7.6%	18.7%	20.5%
Young Drivers	15.4%	14.9%	9.4%	_	4.3%	8.5%	17.6%	19.4%
Truck-Related	3.0%	3.4%	4.0%	2.3%	1.6%	2.1%	4.4%	5.7%
Motorcycle	3.3%	6.4%	2.3%	2.4%	0.7%	3.4%	1.9%	3.3%
Train/Trolley	0.1%	0.0%	0.1%	0.0%	0.1%	0.1%	0.1%	0.0%
Pedestrian	10.6%	1.7%	5.5%	2.6%	_	7.6%	3.6%	1.7%
Bicycle	4.2%	0.4%	1.8%	0.8%	_	1.6%	1.5%	0.7%
Dangerous Behavior								
Impaired Driving	4.8%	14.4%	2.9%	3.7%	5.2%	—	6.0%	5.7%
Unbelted	9.1%	13.1%	7.3%	9.7%	7.2%	19.2%	6.5%	6.2%
Distracted Driving	22.2%	22.9%	28.0%	30.5%	10.9%	23.6%	_	19.8%
Aggressive Driving	17.0%	18.0%	20.6%	22.6%	3.7%	15.2%	13.3%	_

Sources: PennDOT, NJDOT, DVRPC

all coincidence ratios greater than 1.10 are bolded. A coincidence ratio greater than 1.10 was considered to be of note and it indicates that two emphasis areas coincided at least 10 percent more frequently than the emphasis area's percentage of all fatal and injury crashes.

Emphasis Area	Inter- section Safety	Lane Departure	Older Drivers	Young Drivers	Pedestrian & Bicyclist Safety	Impaired Driving	Distracted Driving	Aggressive Driving
Collision Type								
Intersection Safety	—	0.51	1.15	1.04	1.24	0.74	0.86	0.99
Work Zone	0.43	0.99	0.94	0.88	0.44	1.03	0.81	1.76
Lane Departure	0.51	—	0.62	1.01	0.18	2.22	0.89	1.05
Road User								
Older Drivers	1.15	0.62	_	0.64	0.62	0.44	1.09	1.20
Young Drivers	1.04	1.01	0.64	—	0.29	0.57	1.19	1.31
Truck-Related	0.71	0.79	0.92	0.54	0.37	0.48	1.01	1.32
Motorcycle	0.95	1.81	0.66	0.67	0.19	0.97	0.54	0.95
Train/Trolley	1.38	0.35	0.72	0.30	0.76	0.87	0.52	0.33
Pedestrian	1.20	0.20	0.62	0.30	—	0.87	0.41	0.20
Bicycle	1.36	0.14	0.60	0.26	—	0.51	0.47	0.24
Dangerous Behavior								
Impaired Driving	0.74	2.22	0.44	0.57	0.80	_	0.92	0.88
Unbelted	0.97	1.40	0.78	1.03	0.77	2.05	0.70	0.66
Distracted Driving	0.86	0.89	1.09	1.19	0.43	0.92	_	0.77
Aggressive Driving	0.99	1.05	1.20	1.31	0.21	0.88	0.77	_

Table 3.3: Coincidence Ratios by Emphasis Area

Sources: PennDOT, NJDOT, DVRPC

Analysis of Coincidence Ratios

As mentioned previously, a coincidence ratio greater than 1.10 was considered to represent a notable overlap between two emphasis areas. The most notable overlap is between impaired driving and lane departure crashes, with a coincidence ratio of 2.22 (see Table 3.3). It can be inferred that impaired drivers are more likely to leave the roadway than non-impaired drivers. Impaired driving crashes also have a notable overlap with seat belt use (unbelted), with a coincidence ratio of 2.05. Likewise, it can be inferred that non-impaired drivers may be more likely than impaired drivers to use their seat belts.

There is a notable overlap between motorcycle and lane departure crashes as well, with a coincidence ratio of 1.81. Motorcyclists may not be more likely to leave the roadway than other road users, but because motorcycles do not afford the same protection as a passenger vehicle, these lane departure crashes are more likely to be fatal or injurious.

Aggressive driving also has a notable overlap with work zone crashes, with a coincidence ratio of 1.76. It is possible that aggressive driving is more common in work zones because speeding is an aggressive driving behavior, and speed limits are often lowered in work zones. It is also possible that because construction workers are exposed in work zones, aggressive driving in work zones is more likely to be fatal or injurious. Aggressive driving crashes also overlapped with crashes involving older drivers, young drivers, and trucks, but all three were less significant compared to the overlap with work zone crashes.

Besides aggressive driving, intersection safety was the emphasis area that overlapped with the most emphasis areas. Crashes involving older drivers, trains and trolleys, and pedestrians and bicyclists each overlapped with intersection crashes, with coincidence ratios of 1.15, 1.38, and 1.24, respectively. In fact, intersection crashes was the only emphasis area with which some of these emphasis areas have a coincidence ratio above 1.10. While

intersection crashes make up 45.5 percent of all fatal and injury crashes in the region, 52.1 percent of fatal and injury crashes involving older drivers and 56.5 percent of fatal and injury crashes involving bicyclists or pedestrians occurred at intersections (see Table 3.2). Vulnerable road users like bicyclists and pedestrians are most exposed at intersections, and intersections can be difficult for older drivers to navigate.

Emphasis Area Summaries

The remainder of this report is devoted to individual considerations of each of the 13 emphasis areas. Each section devoted to a first-tier emphasis area contains a map presenting municipal data, emphasis area KSI significance by county, and trend data by county for years 2010 to 2016. Each section also presents improvement strategies. The second-tier emphasis area sections include trend data, improvement strategies, and current policies in the region.

38 😑 🚯 😑 🌒 🚯

Intersection Safety

- Philadelphia has both the greatest average KSI and greatest percentage of all KSI in which intersections were a factor.
- Smaller urban areas, such as Burlington City, Chester, Coatesville, Norristown, Princeton, and Pottstown, also have higher rates of intersection KSI than those of surrounding suburban and rural municipalities.

Where Roads Meet

Intersections, despite making up a very small percentage of the surface mileage of all roads in the United States, are the most dangerous part of the road. The FHWA estimates that one-quarter of traffic fatalities and one-half of all traffic injuries, on average, occur at intersections. This is because intersections are where drivers are most likely to come into conflict with each other, as well as with bicyclists and pedestrians. Thirty-eight percent of all KSI crashes between 2013 and 2015 in the Greater Philadelphia region occurred at intersections. Changes to intersection design can yield dramatic reductions in crashes. According to the FHWA, converting a four-way signalized intersection to a roundabout may reduce severe crashes by as much as 78 percent.⁵

As seen in Figure 3.2 on the next page, within the region, Philadelphia has both the greatest average KSI and greatest percentage of all KSI in which intersections were a factor. As a percentage of all KSI, however, it is followed closely by Camden and Delaware counties. These are all more urban counties where intersection density is greater. Burlington and Chester counties have the lowest percentage of KSI in which intersections were a factor.

Half of all traffic injuries occur at intersections, according to the FHWA.

5. FHWA Proven Safety Countermeasures.

Figure 3.2: Importance of Reducing Intersection Crashes by County

Sources: PennDOT, NJDOT, DVRPC

Rates by Municipality

Figure 3.3, on the next page, maps the rate of KSI crashes that occurred at an intersection by municipality in Pennsylvania and New Jersey (Philadelphia County is broken down by planning district). The map shows that urbanized areas have higher rates of intersection KSI, given the higher road

density in those locations. Even smaller cities and towns, such as Burlington City, Chester, Coatesville, Norristown, Princeton, and Pottstown, have higher rates of intersection KSI than those of surrounding suburban and rural municipalities.

Sources: PennDOT, NJDOT, DVRPC

Overlapping Emphasis Areas

Intersection crashes overlapped disproportionately with older driver, train and trolley, and pedestrian and bicyclist crashes (see Table 3.3). Pedestrian and bicyclist crashes made up 11.8 percent of all fatal and injury crashes in the region, compared to 14.8 percent of fatal and injury intersection crashes. The percent of older driver fatal and injury crashes occurring at intersections was 19.6, compared to 17.1 percent of all fatal and injury crashes that involved an older driver. Table 3.4 shows the year-over-year trend in KSI by county that occurred at an intersection. The regional trend in KSI at intersections has fluctuated since 2010. In 2016, the number of KSI reached its peak of 606 after a low of 470 in 2015.

Strategies

Table 3.5, on the next page, shows the strategies identified by the RSTF to address intersection KSI in the region. These strategies were drawn from the 2017 Pennsylvania SHSP, the 2015 New Jersey SHSP, DVRPC's 2015 TSAP, and input from participants in the RSTF during a special strategies session held in the summer of 2017. Note that legislative strategies recommended by safety partners do not constitute endorsement by specific agencies. Priority strategies are bolded.

Table 3.4: Trend in KSI That Occurred at an Intersection

County	2010	2011	2012	2013	2014	2015	2016
Burlington	34	41	41	27	45	22	27
Camden	45	51	52	42	71	39	41
Gloucester	41	29	39	28	48	19	25
Mercer	29	28	21	23	28	12	17
New Jersey Total	149	149	153	120	192	92	110
Bucks	64	65	74	58	41	60	80
Chester	43	48	42	35	28	35	50
Delaware	43	47	37	52	41	41	72
Montgomery	58	49	71	72	66	63	106
Philadelphia	179	189	198	166	179	179	188
Pennsylvania Total	387	398	422	383	355	378	496
Regional Total	536	547	575	503	547	470	606
Fatalities	99	114	118	92	118	107	136
Serious Injuries	437	433	457	411	429	363	470

Sources: PennDOT, NJDOT, DVRPC

Table 3.5: RSTF Key Strategies to Promote Intersection Safety in the Greater Philadelphia Region

Key Strategies	Education	Engineering	Enforcement	Policy
Promote and incentivize the use of FHWA's proven intersection safety countermeasures to local and county roadway owners, (e.g., roundabouts, pedestrian crossing refuge islands, signal back plates with retro-reflective borders), and provide information on funding these improvements.	✓	~		
Promote systemic analysis of intersections and application of pedestrian safety measures (systemic implementation of low-cost safety improvements yields high value and consistency).		\checkmark		
Promote the benefits of making roadway signage and signalized intersections as clear, simple, and consistent as possible.	\checkmark	\checkmark		
Work with local officials and roadway owners to evolve our transportation networks to better balance competing needs, prioritizing intersection safety, and managing circulation.	\checkmark			✓
Share engineering best practices for pedestrian safety at intersections like Continental crosswalks (zebra crossings), red light cameras, and pedestrian phase signal timing.	\checkmark	\checkmark		
Promote policy that (1) continues to examine intersections to identify appropriate locations to install roundabouts, and (2) include a companion piece that ensures consistent signing at roundabouts and education programs to help new users navigate safely and efficiently.	~	~		✓
Research intersections in the region where innovative pedestrian crossing improvements, like all-way stops/Barnes Dances (also known as exclusive pedestrian intervals, where all vehicular traffic is stopped in order to allow pedestrians to cross in all directions) would be appropriate safety improvements.	\checkmark	\checkmark		

Source: DVRPC

Programs and Policies

Table 3.6 identifies a sample of the existing programs and policies in the Greater Philadelphia region to promote intersection safety. Although programs and policies are confined to a single category for the purposes of this document, they may have benefits in multiple categories. Many of the current policies and programs to address intersection safety reflect the priorities identified in Table 3.5, including NJDOT's focus on installing roundabouts where possible and the use of red light cameras in Philadelphia and Abington Township, Pennsylvania.

Table 3.6: Programs and Policies Available in the Greater Philadelphia Region That Help Promote Intersection Safety

Engineering

Consider roundabouts first for all intersection projects (NJDOT)

Transit First signal prioritization program for buses and trolleys (Southeastern Pennsylvania Transportation Authority [SEPTA])

Locate bus stops on far side of intersection when possible (SEPTA)

Intersection Safety Implementation Plan (PennDOT)

Regional Systemic Pilot Roundabout Program (NJDOT)

Enforcement

Automated Red Light Enforcement [ARLE] (Philadelphia Parking Authority; Abington Township, Pennsylvania)

Traffic signal preemption for emergency vehicles (Burlington County Engineering Department, PA municipalities)

Education

Operation Life Saver program: safety education for at-grade highway and rail grade crossings (NJDOT, PennDOT)

Sources: PennDOT, NJDOT, DVRPC

Lane Departure

- More urbanized counties, like Philadelphia, Montgomery, and Mercer, tend to have a lower proportion of KSI attributable to lane departure.
- The number of regional lane departure KSI decreased significantly between 2010 and 2014 but rose again by 2016.

Driving Off Course

Forty-five percent of all KSI crashes between 2013 and 2015 in the Greater Philadelphia region can be attributed to lane departure, which can be characterized as a vehicle crossing the median, resulting in a head-on crash, or as a vehicle leaving the roadway. Lane departure was a contributing factor in 55 percent of traffic fatalities nationally between 2013 and 2014.

Lane departure warning (LDW) systems are helping to curb this crash type. LDW systems alert drivers when they are drifting out of their lane, and have been found to reduce head-on and single-vehicle injury crashes by 53 percent on roads with speed limits between 45 and 75 miles per hour, and by slightly less, 30 percent, on roads with lower speed limits. However, crash avoidance features will take a long time to be phased in for the general public, given the slow rate of fleet turnover in the United States (the average car is nearly 12 years old). Figure 3.4 on the next page shows that Chester and Gloucester counties had the greatest percent of KSI attributable to lane departure in the region, followed by Bucks and Burlington counties. More urbanized counties, like Philadelphia, Montgomery, and Mercer, tended to have a lower proportion of KSI attributable to lane departure, despite Philadelphia also having the greatest average number of KSI where lane departure was a factor.

Lane departure was a factor in 55 percent of traffic fatalities from 2013-2014.

Figure 3.4: Importance of Reducing Lane Departure Crashes by County

Sources: PennDOT, NJDOT, DVRPC

Rates by Municipality

Figure 3.5, on the next page, maps the rate of KSI crashes where lane departure was a contributing factor by municipality in Pennsylvania and New Jersey (Philadelphia County is broken down by planning district). As lane departure crashes are

more common in less densely developed areas, higher rates of lane departure KSI can be found in more suburban and rural communities, mostly on the periphery of the region. Mercer, Montgomery, and Philadelphia counties have the lowest rates.

Figure 3.5: Lane Departure KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016

Sources: PennDOT, NJDOT, DVRPC

Overlapping Emphasis Areas

Lane departure crashes overlapped disproportionately with motorcycle, impaired driving, and seat belt use (unbelted) crashes (see Table 3.3). Lane departure and impaired driving crashes had the most disproportionate overlap of any two emphasis areas. Impaired driving is a factor in 6.5 percent of all fatal and injury crashes in the region compared to 14.4 percent of fatal and injury crashes in which lane departure was also a factor. There is also a noteworthy overlap between lane departure and motorcycle crashes. Motorcyclists are involved in 3.5 percent of all fatal and injury crashes in the region compared to 6.4 percent of fatal and injury crashes in which lane departure was a factor. Drivers were unbelted in 13.1 percent of lane departure crashes compared to 9.3 percent of all fatal and injury crashes in the region. Table 3.7 shows the year-over-year trend in KSI by county where lane departure was a factor. The regional trend in lane departure KSI has fluctuated

since 2010. The number of lane departure KSI decreased significantly from 746 to 524 between 2010 and 2014 but by 2016 had risen again to 726.

County	2010	2011	2012	2013	2014	2015	2016
Burlington	79	87	83	70	37	65	58
Camden	88	53	46	54	42	60	40
Gloucester	60	57	52	61	56	48	54
Mercer	42	30	28	22	30	27	28
New Jersey Total	269	227	209	207	165	200	180
Bucks	95	108	120	93	66	107	137
Chester	110	89	74	78	91	73	98
Delaware	57	70	63	60	42	49	87
Montgomery	99	110	116	92	65	78	119
Philadelphia	116	123	147	95	95	131	105
Pennsylvania Total	477	500	520	418	359	438	546
Regional Total	746	727	729	625	524	638	726
Fatalities	170	192	195	169	153	199	158
Serious Injuries	576	535	534	456	371	439	568

Table 3.7: Trend in KSI Where Lane Departure Was a Factor

Sources: PennDOT, NJDOT, DVRPC

48 😑 🖗 😑 🌒 😫 🚯

Strategies

Table 3.8 shows the strategies identified by the RSTF to address lane departure KSI in the region. These strategies were drawn from the 2017 Pennsylvania SHSP, the 2015 New Jersey SHSP, DVRPC's 2015 TSAP, and input from participants in the RSTF during

a special strategies session held in the summer of 2017. Note that legislative strategies recommended by safety partners do not constitute endorsement by specific agencies. Priority strategies are bolded.

Table 3.8: RSTF Key Strategies to Address Lane Departure Crashes in the Greater Philadelphia Region

Key Strategies	Education	Engineering	Enforcement	Policy
Promote engineering best practices used by NJDOT and PennDOT, or recommended by FHWA (including proven countermeasures) in keeping vehicles on the roadway; incentivize county and local road operators to use them and provide information on grants and other funding opportunities.	✓			
Promote use of edgeline and centerline rumble strips and look to best practices (Minnesota Department of Transportation) for effectiveness of sinusoidal rumble strips—a new technology that reduces ambient noise outside the car. Help promote the benefits of rumble strips as the "sound of safety."	√	~		
Analyze data to identify run-off-the-road and cross-median crash trend locations in the region, specifically on county and local roads as candidate locations for the New Jersey local safety program and PA local safety efforts.	~	✓		
Promote use of Clear Zones (typically in rural areas) to minimize the consequences of leaving the roadway and to also create space for people to stop if they do leave their lane (in places where the context is appropriate).	\checkmark	\checkmark		
Promote the safety benefits of new in-vehicle technologies like lane keeping, advance their availability in cheaper-model vehicles, and better educate new vehicle owners on how to use these safety features.	~			✓

Source: DVRPC

Programs and Policies

Table 3.9 identifies a sample of the existing programs and policies in the Greater Philadelphia region to address lane departure crashes. Although programs and policies are confined to a single category for the purposes of this document, they may have benefits in multiple categories. Many of the current policies and programs to address lane departure crashes reflect the priorities identified in Table 3.8, including NJDOT's and PennDOT's programs to implement FHWA proven safety countermeasures to prevent lane departure crashes.

Table 3.9: Programs and Policies Available in the Greater Philadelphia Region That Help Address Lane Departure Crashes

Engineering

Systemic centerline and edgeline rumble strip initiative (NJDOT)

Roadway Departure Implementation Plan and High Friction Surface Treatment Program; safety edge requirement on all resurfacing, rehabilitation, and restoration projects; and highway cable median barrier applications (PennDOT)

Annual roadway resurfacing and restriping program (New Jersey and Pennsylvania counties, state DOTs)

New Jersey Regional Curve Inventory and Safety Assessment (New Jersey counties)

Sources: PennDOT, NJDOT, DVRPC

Distracted Driving

- Within each state, distracted driving crashes have fluctuated over the past five years, with any drops quickly erased in subsequent years.
- Distracted driving data differs markedly between Pennsylvania and New Jersey, making regional comparisons difficult to perform.

Staying Focused

Distracted driving is any non-driving activity that could divert a person's attention away from the primary task of driving. While distractions can include anything from eating to looking at billboards, cell phone use is an increasing concern as a contributor to distracted driving. Distracted driving can be difficult to analyze because of underreported crash data. The National Safety Council found that many fields relevant to distracted driving crashes-such as texting while driving-are not included on crash forms, and even when relevant fields are available. police inconsistently record cell phone use. In addition, laws that apply to distracted driving differ by state. In New Jersey, use of a mobile device while driving has been banned since 2004. Pennsylvania banned texting while driving in 2012, but other uses of handheld mobile devices remain legal. This may contribute to differences in data collection because police are more likely to assign a contributing factor to a crash if the behavior is illegal.

Distracted driving was a contributing factor in 33 percent of annual KSI in the region, on average, for the period 2013–2015. The data associated with distracted driving, however, is very different between the Pennsylvania and New Jersey sub-regions. In the New Jersey sub-region, distracted driving (listed as "Driver Inattention") is reported as a contributing factor in 50.2 percent of KSI, while in the Pennsylvania sub-region, it is reported as a contributing factor in just 5.8 percent of KSI.

The differences in the definition and frequency of citation of distracted driving violations between New Jersey and Pennsylvania make comparison between counties in different states extremely difficult. Nevertheless, Figure 3.6 shows that within New

Figure 3.6: Importance of Reducing Distracted Driving by County

Sources: PennDOT, NJDOT, DVRPC

Jersey, Burlington County had the greatest number and greatest percentage of KSI attributable to driver inattention, followed by Gloucester, Camden, and Mercer counties. In Pennsylvania, Bucks County had the greatest number of average KSI per year attributable to distracted driving, but Chester County had the greatest proportion of KSI. Philadelphia County had the second-lowest average KSI per year attributed to distraction (followed by Delaware County) and the lowest proportion of all counties in the region.

Rates by Municipality

Figure 3.7, on the next page, maps the rate of KSI crashes where distracted driving was a contributing factor by municipality in Pennsylvania (Philadelphia

County is broken down by planning district); Figure 3.8 displays distracted driving KSI rates in New Jersey. Similar to Figure 3.6, the maps show how Burlington and Gloucester counties in New Jersey and Chester and Bucks counties in Pennsylvania have the highest KSI rates in their respective states. Philadelphia has the lowest rate in Pennsylvania, while Mercer County has the lowest rate in New Jersey. The maps also identify locations with high distracted driving KSI rates within counties that have generally lower rates overall, and vice versa.

52 😂 🖗 😑 😫 🚯

Figure 3.7: Distracted Driving KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016 (Pennsylvania)

Sources: PennDOT, DVRPC

Figure 3.8: Distracted Driving KSI Crash Rate by AADT by Municipality, 2012–2016 (New Jersey)

Sources: NJDOT, DVRPC

Overlapping Emphasis Areas

The only emphasis area with which distracted driving crashes overlapped disproportionately is young driver crashes (see Table 3.3). Young drivers, aged 16 to 20, are involved in 14.8 percent of all fatal and injury

crashes in the region, compared to 17.6 percent of fatal and injury crashes in which distracted driving was a factor.

54 😑 🚯 😑 🈫 🚯

Table 3.10 shows the year-over-year trend in KSI by county where distracted driving was a factor. The regional trend in distracted driving KSI has fluctuated

since 2010. Starting in 2015, the number of KSI rose again after experiencing a significant drop from 2012 to 2013.

County	2010	2011	2012	2013	2014	2015	2016
Burlington	62	71	63	59	36	60	60
Camden	72	61	60	42	50	52	45
Gloucester	43	46	37	47	61	42	43
Mercer	44	33	36	30	31	13	24
New Jersey Total	221	211	196	178	178	167	172
Bucks	14	18	19	12	14	15	20
Chester	13	11	10	16	8	12	22
Delaware	4	1	9	9	6	6	9
Montgomery	15	19	28	16	6	13	19
Philadelphia	20	7	19	8	9	16	12
Pennsylvania Total	66	56	85	61	43	62	82
Regional Total	287	267	281	239	221	229	254
Fatalities	58	54	61	71	61	65	65
Serious Injuries	229	213	220	168	160	164	189

Table 3.10: Trend in KSI Where Distracted Driving Was a Factor

Sources: PennDOT, NJDOT, DVRPC

Cell phone use is a major focus of distracted driving prevention measures. Both Pennsylvania and New Jersey currently provide a field for cell phone use on their crash reporting forms. In Pennsylvania, this field is specifically tied to driver distraction as a contributing factor to the crash. In New Jersey, however, the field was not connected to distraction as a contributing factor through 2016; the updated crash reporting form does, and this will be reflected in 2017 data. Table 3.11 shows the trend in KSI in crashes where cell phone use was reported. These figures are a small portion of the total KSI from distracted driving crashes (as previously noted, however, they are not necessarily a subset of the distracted driving crashes in New Jersey). It suggests that cell phone use in KSI crashes may be underreported in the region, and that better data collection methods may be needed in order to accurately capture the incidence of KSI crashes to which cell phone use contributed.

		2012	2013	2014	2015	2016
Pennsylvania	Fatalities	2	2	3	1	1
	Serious Injuries	7	4	7	6	11
	KSI	9	6	10	7	12
	Fatalities	2	2	1	2	1
New Jersey	Serious Injuries	4	3	2	2	2
	KSI	6	5	3	4	3
	Fatalities	4	4	4	3	2
Region	Serious Injuries	11	7	9	8	13
	KSI	15	11	13	11	15

Table 3.11: Trend in KSI Crashes Where Cell Phone Use Was Reported

Sources: PennDOT, NJDOT, DVRPC

56 😑 🖗 😑 🌒 😫 🚯

Strategies

The RSTF is addressing distracted driving as a standalone emphasis area for the first time in the current TSAP cycle (previously, distracted driving was combined with impaired driving). Table 3.12 shows the strategies identified by the RSTF to address distracted driving in the region. These strategies were drawn from the 2017 Pennsylvania SHSP, the

2015 New Jersey SHSP, DVRPC's 2015 TSAP, and input from participants in the RSTF during a special strategies session held in the summer of 2017. Note that legislative strategies recommended by safety partners do not constitute endorsement by specific agencies. Priority strategies are bolded.

Table 3.12: RSTF Key Strategies to Address Distracted Driving in the Greater Philadelphia Region

Key Strategies	Education	Engineering	Enforcement	Policy
Encourage traffic calming, rumble strips, and other engineering treatments to reduce crashes from distracted or drowsy driving.		\checkmark		
Promote wider enforcement of existing laws and help identify financing for targeted police details.			\checkmark	
Promote laws and outreach campaigns implemented to reduce distracted driving and evaluate their effectiveness.	\checkmark			\checkmark
Promote policy change to better align Pennsylvania with New Jersey by making talking on a hand-held cell phone while driving an offense (texting while driving is a primary offense in Pennsylvania).				\checkmark
Coordinate with appropriate road owners on analysis to identify opportunities to create and promote safe pull-over areas for people to text/talk (NJDOT Safe Phone Zones).		✓		
Promote organizations with successful bans on cell phone use while driving, and share model policy guidelines that others may use. Work with TMAs to encourage employers to institute distracted driving policies effective during work hours.	\checkmark			
Promote better advertising to alert drivers of laws and their consequences as they cross from state to state, like the ban on texting while driving in Pennsylvania; explore technologies to alert drivers of these laws and their consequences to promote safer driving.	✓			
Share distracted driving educational resources and use social media widely as an outlet for messaging.	\checkmark			
driving an offense (texting while driving is a primary offense in Pennsylvania). Coordinate with appropriate road owners on analysis to identify opportunities to create and promote safe pull-over areas for people to text/talk (NJDOT Safe Phone Zones). Promote organizations with successful bans on cell phone use while driving, and share model policy guidelines that others may use. Work with TMAs to encourage employers to institute distracted driving policies effective during work hours. Promote better advertising to alert drivers of laws and their consequences as they cross from state to state, like the ban on texting while driving in Pennsylvania; explore technologies to alert drivers of these laws and their consequences to promote safer driving. Share distracted driving educational resources and use social media widely as an outlet for messaging. Source: DVRPC	✓			

REGIONAL SAFETY EMPHASIS AREAS: DISTRACTED DRIVING

Programs and Policies

Table 3.13 identifies a sample of the existing programs and policies in the Greater Philadelphia region to address distracted driving. Although programs and policies are confined to a single category for the purposes of this document, they may have benefits in multiple categories. Many of the current policies and programs to address distracted driving reflect the priorities identified in Table 3.12, such as NJDHTS's UDrive. UText. UPay Distracted Driving Enforcement Campaign.

Table 3.13: Programs and Policies Available in the Greater Philadelphia Region That Help Address Distracted Driving Crashes

Engineering

Safe Phone Zone program (NJDOT in partnership with GEICO)

Enforcement

Ban on texting while driving (Pennsylvania)

UDrive. UText. UPay Distracted Driving Enforcement Campaign (NJDHTS)

Ban on handheld cell phone use while driving, as well as all cell phone use for school bus drivers, learner's permit, and intermediate license holders while driving (New Jersey)

Education

STOP Distracted Driving Campaign (3D Collision Centers and TPS Graphics)

Distracted Driving Mobilization (NJDHTS)

Distracted and drowsy driving program (Mid-Atlantic Foundation for Safety and Education)

Policy kit for companies interested in restricting cell phone use for their employees (National Safety Council)

Sources: PennDOT, NJDOT, DVRPC

Aggressive Driving

- New Jersey and Pennsylvania have different definitions for aggressive driving; as a result, fewer KSI are attributed to aggressive driving in Pennsylvania than in New Jersey.
- Automated speed enforcement (ASE) and red light cameras are becoming effective tools in preventing aggressive driving crashes; unfortunately, the implementation of ASE throughout the Greater Philadelphia region is politically complicated.

Slow Down!

Aggressive driving is defined by NHTSA as performing at least two of a number of dangerous and often illegal actions, such as running a stop sign or red light, passing in a no-passing zone, and speeding (see DVRPC's Municipal Implementation Tool, Speeding and Traffic Safety, for more information on the dangers of speeding). Pennsylvania has adopted this definition of aggressive driving, whereas New Jersey defines aggressive driving as performing at least one of these actions. As a result, New Jersey appears to have many more aggressive driving crashes than Pennsylvania. In New Jersey, aggressive driving was a factor in 35-45 percent of KSI crashes, whereas in Pennsylvania, aggressive driving contributed to only 7–13 percent of KSI crashes. Regardless of how each state defines aggressive driving, aggressive driving KSI crashes have been on the decline. In New Jersey, there has been an 11 percent decline in aggressive driving KSI crashes between 2010-2012 and 2013–2015. In Pennsylvania, there was a 29 percent decrease between the same time periods.

Despite this apparent reduction in aggressive driving KSI crashes, aggressive driving was a factor in 18 percent of KSI crashes between 2013 and 2015 in the Greater Philadelphia region and therefore remains a major issue that needs to be addressed in order to promote safety in the Greater Philadelphia region. Emerging technologies, such as automated speed enforcement (ASE) and red light cameras, are becoming effective tools in preventing aggressive driving crashes in various places in the United States and beyond. ASE has been found to reduce average speeds by up to 15 percent, with a resulting decrease in crashes of up to 49 percent. In Pennsylvania, Senate Bill 172 recently authorized the use of ASE in work zones as well as along Roosevelt Boulevard in Philadelphia. Unfortunately, ASE is prohibited in New

Jersey, which complicates the implementation of ASE throughout the Greater Philadelphia region.

Pennsylvania also has an Automated Red Light Enforcement Program (ARLE). Since ARLE began in 2002, 30 intersections in Philadelphia and three intersections in Montgomery County have been equipped with red light cameras. Revenue generated from fines has funded millions of dollars in traffic safety improvements statewide. Moreover, the number of injuries at ARLE intersections in Philadelphia decreased 30 percent between 2010 and 2015, compared to just 9 percent at non-ARLE intersections. New Jersey began a five-year pilot red light camera program in 2009, but at the conclusion of the pilot, the program was not renewed. The differences in the definition and frequency of citation of aggressive driving violations between New Jersey and Pennsylvania make comparison between counties in different states extremely difficult. Figure 3.9 shows that within New Jersey, Camden County had the greatest number of KSI attributable to aggressive driving, but the second-greatest percentage of all KSI after Gloucester County. In Pennsylvania, Chester County had the greatest percentage of KSI attributable to aggressive driving, followed by Delaware County. Philadelphia County had the largest average number of KSI attributable to aggressive driving among the Pennsylvania counties, but the second-lowest proportion of all counties, virtually tied with Bucks County.

Figure 3.9: Importance of Reducing Aggressive Driving by County

Sources: PennDOT, NJDOT, DVRPC

60 🖴 🚯 🚍 🚇 😭 🚯

Rates by Municipality

Figure 3.10 maps the rate of KSI crashes where aggressive driving was a contributing factor by municipality in Pennsylvania (Philadelphia County is broken down by planning district); Figure 3.11 displays aggressive driving KSI rates in New Jersey. Chester County has the highest aggressive driving rate in Pennsylvania, while Gloucester, Camden, and Burlington counties in New Jersey each have high rates of aggressive driving. Providing this data at the

municipal level helps local police to identify trends for more targeted enforcement.

Figure 3.10: Aggressive Driving KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016 (Pennsylvania)

Sources: PennDOT, DVRPC

REGIONAL SAFETY EMPHASIS AREAS: AGGRESSIVE DRIVING

Figure 3.11: Aggressive Driving KSI Crash Rate by AADT by Municipality, 2012–2016 (New Jersey)

Source:s NJDOT, DVRPC

Overlapping Emphasis Areas

Aggressive driving crashes overlapped disproportionately with work zone, heavy truck-related, young driver, and older driver crashes (see Table 3.3). Young drivers were involved in 14.8 percent of all fatal and injury crashes in the region, compared to 19.4 percent of fatal and injury crashes in which aggressive driving was a factor. Older drivers were involved in 17.1 percent of all fatal and injury crashes in the region, compared to 20.5 percent of fatal and injury crashes in which aggressive driving was a factor.

Table 3.14 shows the year-over-year trend in KSI by county where aggressive driving was a factor. The regional trend in aggressive driving KSI has fluctuated since 2010. In 2016, the number of KSI rose again after experiencing a significant drop from 2014 to 2015.

Strategies

Table 3.15, on the next page, shows the strategies identified by the RSTF to address aggressive driving in the region. These strategies were drawn from the 2017 Pennsylvania SHSP, the 2015 New Jersey SHSP, DVRPC's 2015 TSAP, and input from participants in the RSTF during a special strategies session held in the summer of 2017. Note that legislative strategies recommended by safety partners do not constitute endorsement by specific agencies. Priority strategies are bolded.

County	2010	2011	2012	2013	2014	2015	2016
Burlington	59	60	54	44	54	33	36
Camden	38	58	56	49	55	49	38
Gloucester	34	39	39	41	56	25	32
Mercer	38	29	21	18	25	18	15
New Jersey Total	169	186	170	152	190	125	121
Bucks	22	25	29	13	6	16	26
Chester	24	33	22	19	19	18	26
Delaware	12	15	14	15	12	12	11
Montgomery	20	25	18	16	18	17	25
Philadelphia	29	35	43	26	28	26	38
Pennsylvania Total	107	133	126	89	83	89	126
Regional Total	276	319	296	241	273	214	247
Fatalities	74	98	91	81	63	69	66
Serious Injuries	202	221	205	160	210	145	181

Table 3.14: Trend in KSI Where Aggressive Driving Was a Factor

Sources: PennDOT, NJDOT, DVRPC

Table 3.15: RSTF Key Strategies to Address Aggressive Driving in the Greater Philadelphia Region

Key Strategies	Education	Engineering	Enforcement	Policy
Look for opportunities to implement, incentivize, and publicize engineering and technology strategies, such as traffic calming and road diets, that can help reduce aggressive driving.	\checkmark	\checkmark		
Provide information and analysis to inform policy discussions that address aggressive driving and its elements, such as helping New Jersey move toward the NHTSA definition of aggressive driving; helping advance use of radar for local police in Pennsylvania and advocating best practices modeled on Pennsylvania State Police radar use; and promoting expanded use of automated enforcement in Pennsylvania following Senate Bill 172, which recently authorized the use of speed cameras in work zones and along Roosevelt Boulevard in Philadelphia, as well as promoting the passage of similar legislation in New Jersey.				✓
Support the long-term need for culture change around aggressive driving by communicating to the public what aggressive driving behaviors are and why they are so dangerous, including correlation between higher speeds and higher-severity crashes, as well as the need to adjust driving to conditions/contexts.	✓			
Promote existing technologies and programs for reporting aggressive driving, like NJ's #77 Aggressive Driving Hotline; research easier and safer ways to report, like online forms or a voice-activated smart phone application; and use the report findings to target enforcement by location.	✓		\checkmark	
Educate people on defensive driving around aggressive drivers to avoid escalating potentially dangerous situations. Piggyback on existing programs to promote aggressive driving prevention measures.	~			
Share and promote aggressive driving campaigns (e.g., Put the Brakes on Fatalities Day, Spread The Love Let Somebody Merge, etc.) on websites, email blast, social media, etc., and use variable message signs to track severe crash trends by location to raise awareness.	\checkmark			
Further publicize enforcement campaigns and special policing (like DUI check points) to increase their effectiveness and help disseminate factual information about enforcement.			\checkmark	
Better promote the fines and penalties resulting from speeding violations (e.g., penalties doubled in work zones, etc).	\checkmark		\checkmark	

Source: DVRPC

Programs and Policies

Table 3.16 identifies a sample of the existing programs and policies in the Greater Philadelphia region to address aggressive driving. Although programs and policies are confined to a single category for the purposes of this document, they may have benefits in multiple categories. Many of the current policies and programs to address aggressive driving reflect the priorities identified in Table 3.15, including New Jersey State Police's #77 Aggressive Driving Hotline, to report aggressive driving and aggressive driving crashes; the NJDHTS's Put the Brakes on Fatalities Day, to raise awareness of aggressive driving; and the use of red light cameras in Philadelphia and Abington Township, Pennsylvania.

Table 3.16: Programs and Policies Available in the Greater Philadelphia Region That Help Address Aggressive Driving Crashes

Engineering Speed Management Action Plan (PennDOT) Enforcement

Red-Light Running Automated Enforcement (Philadelphia Parking Authority, Abington Township)

US 130 Burlington County aggressive driving enforcement project (NJDHTS)

#77 Aggressive Driving Hotline (New Jersey State Police)

Safe Corridors enforcement program (New Jersey State Police)

Pennsylvania Aggressive Driving Enforcement and Education Project (Pennsylvania State Police and PennDOT)

Automated Speed Enforcement in Work Zones (PennDOT and Pennsylvania Turnpike Commission; the program also permits the City of Philadelphia to install speed cameras along Roosevelt Boulevard)

Education

Put the Brakes on Fatalities Day (NJDHTS)

Impaired Driving

- Drugged driving fatalities have increased substantially; in response, NHTSA launched its Drug-Impaired Driving Initiative in January 2018.
- In the Greater Philadelphia region, impaired driving crashes tend to represent the greatest proportion of all KSI in more rural counties and they tend to involve lane departure and unbelted drivers or passengers.

Responsible Behavior

Impaired driving is defined as driving under the influence of alcohol or drugs, whether they are illegal, prescription, or over-the-counter drugs. Nationally, alcohol-impaired driving contributed to 28 percent of traffic fatalities in 2016, resulting in approximately 10,500 deaths, which represents a 20 percent decrease from the number of deaths caused by impaired driving in 2007. This decrease can be attributed in part to the success of groups such as Mothers Against Drunk Driving (MADD) and high-visibility and targeted enforcement campaigns (DUI checkpoints).

More recently, however, the number of alcoholrelated traffic fatalities per year has not been decreasing; in fact, the number of alcohol-related traffic fatalities has increased year-over-year since 2014. This has led some states to consider lowering the legal blood alcohol limit from 0.08 to 0.05 to deter drivers from driving at all after having a drink, intent on further reducing the number of alcoholrelated crashes that occur as a result. The odds of a driver crashing with a blood alcohol level of 0.05 are double those of a sober driver, whereas those odds are tripled for a driver with a blood alcohol level of 0.08. Utah is the first state to lower the legal blood alcohol limit to 0.05, with the new law set to go into effect in December of 2018.

> Alcohol contributed to 28 percent of traffic fatalities nationwide in 2016.

Drugged driving is also on the rise across the United States. In 2005, 28 percent of drivers involved in fatal crashes who were tested for drugs in their system tested positive; by 2015, that number had increased to 43 percent. However, only 57 percent of drivers in fatal crashes were tested for drugs in 2015. Therefore, it is likely that drug impairment is widely underreported. Given the recent legalization of recreational marijuana use in several states, as well as the national opioid epidemic, NHTSA launched its Drug-Impaired Driving Initiative in January 2018 to raise awareness of the issue and develop best practices to address it.

Impaired driving was a factor in 19 percent of KSI crashes between 2013 and 2015 in the Greater Philadelphia region. In this analysis, impaired driving includes only alcohol-impaired driving and does not include drugged driving, given the lack of reliable data on its prevalence. Alcohol-impaired driving is defined as operating a motor vehicle with a

blood alcohol level of 0.08 or higher for drivers who are 21 years old or older, with a lower legal limit for drivers under 21 years of age (who are prohibited from drinking alcohol nationwide, per the National Minimum Drinking Act of 1984). However, a person with a blood alcohol level lower than these amounts may still be considered driving under the influence of alcohol if they are determined to be too impaired to operate a motor vehicle safely. This definition is used in both states.

Philadelphia and Chester counties both experienced approximately the same average number of KSI per year in which impaired driving was a factor between 2013 and 2015 (see Figure 3.12). In Chester County, however, this accounts for the highest proportion of all KSI by county for any county in the region; in Philadelphia, it is the lowest proportion despite having the highest average number of KSI in which impaired driving was a factor.

Figure 3.12: Importance of Reducing Impaired Driving by County

Sources: PennDOT, NJDOT, DVRPC

Rates by Municipality

Figure 3.13 maps the rate of KSI crashes where impaired driving was a contributing factor by municipality in Pennsylvania and New Jersey (Philadelphia County is broken down by planning district). Pennsylvania generally has higher rates of impaired driving KSI compared to New Jersey. Chester and Bucks counties, similar to Figure 3.12, have particularly high rates of impaired driving KSI. Suburban and rural municipalities appear to have higher impaired driving KSI rates when compared to more urban locations, although there are exceptions to this trend. For instance, Delaware County, which is more urbanized than all other Pennsylvania suburban counties, has notably high rates.

Figure 3.13: Impaired Driving KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016

68 🚍 🖗 🚍 🖗 🗐 🚯

Overlapping Emphasis Areas

Crashes that involved impaired drivers overlapped disproportionately with lane departure and seat belt use (unbelted) crashes (see Table 3.3). Of these, lane departure crashes had the most disproportionate overlap. In fact, impaired driving crashes and lane departure crashes had the most disproportionate overlap of any two emphasis areas. Lane departure is a factor in 22.5 percent of all fatal and injury crashes in the region compared to 49.9 percent of fatal and injury crashes in which impaired driving was also a factor. There is also a noteworthy overlap between impaired driving and unbelted crashes. The overlap between impaired driving crashes and unbelted crashes is the second most disproportionate of all the overlaps between emphasis areas. Unbelted crashes made up 9.3 percent of all fatal and injury crashes in the region, compared to 19.2 percent of fatal and injury impaired driving crashes.

Table 3.17 shows the year-over-year trend in KSI by county where impaired driving was a factor. The regional trend in impaired driving KSI has fluctuated since 2010. Between 2010 and 2014, impaired driving KSI fell by nearly a third, before rising again in 2015 and 2016.

County	2010	2011	2012	2013	2014	2015	2016
Burlington	79	87	83	70	37	65	58
Camden	88	53	46	54	42	60	40
Gloucester	60	57	52	61	56	48	54
Mercer	42	30	28	22	30	27	28
New Jersey Total	269	227	209	207	165	200	180
Bucks	95	108	120	93	66	107	137
Chester	110	89	74	78	91	73	98
Delaware	57	70	63	60	42	49	87
Montgomery	99	110	116	92	65	78	119
Philadelphia	116	123	147	95	95	131	105
Pennsylvania Total	477	500	520	418	359	438	546
Regional Total	746	727	729	625	524	638	726
Fatalities	170	192	195	169	153	199	158
Serious Injuries	576	535	534	456	371	439	568

Table 3.17: Trend in KSI Where Impaired Driving Was a Factor

Sources: PennDOT, NJDOT, DVRPC

REGIONAL SAFETY EMPHASIS AREAS: IMPAIRED DRIVING

Strategies

Table 3.18 shows the strategies identified by the RSTF to address impaired driving in the region. These strategies were drawn from the 2017 Pennsylvania SHSP, the 2015 New Jersey SHSP, DVRPC's 2015 TSAP, and input from participants in the RSTF during

a special strategies session held in the summer of 2017. Note that legislative strategies recommended by safety partners do not constitute endorsement by specific agencies. Priority strategies are bolded.

Table 3.18: RSTF Key Strategies to Address Impaired Driving in the Greater Philadelphia Region

Key Strategies	Education	Engineering	Enforcement	Policy
Research and promote laws, policies, and technologies to reduce impaired driving and evaluate their effectiveness, including local examples and examples from states that have recently legalized marijuana.				~
Expand successful outreach campaigns designed to combat drunk driving to address all types of impaired driving.	\checkmark		\checkmark	
Encourage a safety culture around impaired driving with targeted campaigns that emphasize the availability of transportation alternatives to impaired driving and the importance of telling an impaired person that they should not drive.	✓			
Support the development and evolution of standards for the definition of impairment for controlled substances (e.g., cocaine, heroin, fentanyl, etc.), prescription drugs, and drowsy driving in New Jersey and Pennsylvania.			\checkmark	✓
Improve coordination with law enforcement to build on their experience in dealing with impaired driving (especially drugged) and support their enforcement efforts.			\checkmark	
Continue to provide information for informed policy action on responsibilities of drivers, pedestrians, and bicyclists regarding both legal and illegal drugs.				~
Support drug recognition expert (DRE) training to increase the availability of DREs and raise the profile of DREs in the region.			\checkmark	

Source: DVRPC

Programs and Policies

Table 3.19 identifies a sample of the existing programs and policies in the Greater Philadelphia region to combat impaired driving. Although programs and policies are confined to a single category for the purposes of this document, they may have benefits in multiple categories. Many of the current policies

and programs to reduce impaired driving reflect the priorities identified in Table 3.18, including training local and state police to be Drug Recognition Experts (DREs) and a variety of awareness campaigns to discourage young drivers in particular from driving while impaired.

Table 3.19: Programs and Policies Available in the Greater Philadelphia Region That Help Address Impaired Driving Crashes

Engineering

Ignition interlock contract and quality assurance program with Pennsylvania DUI Association (PennDOT)

Enforcement

Provide funding for municipal and county DUI task forces (PennDOT)

NHTSA-funded sobriety checkpoints (Local and state police, Pennsylvania and New Jersey)

NHTSA-funded "Drive Sober or Get Pulled Over" Labor Day mobilization and other state mobilizations (Local and state police, Pennsylvania and New Jersey)

Drug Recognition Expert training for police (Local and state police, Pennsylvania and New Jersey)

Education

Defensive driving course (includes DUI in curriculum) through counties, DUI training for law enforcement,

Advanced Roadside Impaired Driving Enforcement (Local and state police, Pennsylvania and New Jersey)

Cruisin' SMART: young driver peer-to-peer DUI program (Bryn Mawr Rehab Hospital)

Alcohol awareness program (Mid-Atlantic Foundation for Safety and Education)

Comprehensive alcohol traffic education and enforcement program (Rutgers University)

Impaired Driver Simulation Program (Cherry Hill Township, New Jersey Police)

New Jersey Teen Driver Program to educate teens on the consequences of DUI (New Jersey State Police)

Funding for Matt Maher DUI presentation to South Jersey high schools (State Farm Insurance)

Safety Bug and SAFETY SIMulator (Pennsylvania DUI Association)

Sources: PennDOT, NJDOT, DVRPC

REGIONAL SAFETY EMPHASIS AREAS: IMPAIRED DRIVING

Pedestrian and Bicyclist Safety

- Even as national traffic deaths hit historic lows over the past decade, pedestrian deaths continued to rise.
- Both New Jersey and Pennsylvania are designated as Pedestrian and Bicycle Safety Focus States by the FHWA.

Vulnerable Users

Pedestrians and bicyclists are the most vulnerable users on the road, and therefore are more likely to be killed or seriously injured in a crash. Nationally, as cars have become safer for occupants, traffic deaths have decreased by 9 percent between 2007 and 2016, while pedestrian fatalities have increased by 27 percent in the same timeframe. Twenty-two percent of traffic fatalities and serious injuries in the Greater Philadelphia region between 2013 and 2015 were pedestrians or bicyclists, which is disproportionate to their relative mode shares. Therefore, it is unsurprising that both New Jersey and Pennsylvania are designated as Pedestrian and Bicycle Safety Focus States by the FHWA, which means that vulnerable user fatalities were higher than the national average in each state. The program provides special resources to focus states to help improve safety in these areas.

In the greater Philadelphia region, the percentage of all fatal and serious injury crashes that involved a pedestrian or bicyclist was highest in Philadelphia, the only Pedestrian and Bicycle Safety Focus City in the region, at 34 percent between 2013 and 2015 (see Figure 3.14). Philadelphia's Vision Zero Action Plan—adopted in September 2017—emphasizes interventions to reduce pedestrian and bicyclist fatalities, with the goal of reducing all traffic fatalities and serious injuries to zero by 2030. Mercer County in New Jersey had the second-highest percentage:

Nationally, pedestrian fatalities increased 27 percent from 2007 to 2016.

Figure 3.14: Importance of Promoting Pedestrian and Bicyclist Safety by County

Sources: PennDOT, NJDOT, DVRPC

27 percent of traffic fatalities and serious injuries between 2013 and 2015 were pedestrians and cyclists. Mercer and Camden counties have countywide Complete Streets policies, which support Vision Zero by emphasizing that roads accommodate all users safely, through road diets and roadway space redistribution, for example. In addition, both Pennsylvania and New Jersey have Complete Streets policies at the state level, and 31 municipalities in the Greater Philadelphia region have their own Complete Streets policies, including Philadelphia, Trenton, and Camden.

Philadelphia has the greatest average number of KSI per year involving pedestrians and bicyclists, as well as the highest proportion of all KSI involving this group. Overall, the counties that account for the largest cities in the region also see the greatest proportion of road KSI involving pedestrians and bicyclists, including Mercer (which includes the City of Trenton), Delaware (City of Chester), and Camden (City of Camden)

counties. The counties that are generally more rural, like Chester and Gloucester counties, see the lowest number of average pedestrian and bicyclist crashes, as well the lowest proportion of all KSI crashes.

Rates by Municipality

Figure 3.15, on the next page, maps the rate of KSI crashes that involved a pedestrian or a bicyclist by municipality in Pennsylvania and New Jersey (Philadelphia County is broken down by planning district). Philadelphia has the highest rate out of all the counties in the region, given that a higher proportion of trips are made by walking or bicycling in the city than in other areas in the region. Although pockets of higher rates are scattered throughout the region, there are concentrations in older suburban towns with higher development densities and walkable destinations. These concentrations can be found in Camden and Delaware counties, for example.

Figure 3.15: Pedestrian and Bicylist KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012-2016

Sources: PennDOT, NJDOT, DVRPC

Overlapping Emphasis Areas

The only emphasis area with which pedestrian and bicyclist crashes disproportionately overlapped is intersection crashes (see Table 3.3). Of all fatal and injury crashes in the region, 45.5 percent occurred in

an intersection, while 56.5 percent of fatal and injury crashes involving a bicyclist or pedestrian occurred in an intersection.

(4 🖨 🖗 🖶 🖨 🚯

Table 3.20 shows the year-over-year trend in KSI by county that involved pedestrians or bicyclists. The regional trend in pedestrian and bicyclist KSI has fluctuated since 2010. The number of KSI decreased

from 348 in 2010 to 272 in 2014 but then increased again to 340 by 2016. This pattern reflects national trends.

County	2010	2011	2012	2013	2014	2015	2016
Burlington	24	16	24	19	18	17	26
Camden	40	42	46	31	22	17	32
Gloucester	22	14	12	12	10	15	14
Mercer	26	21	26	19	17	8	9
New Jersey Total	112	93	108	81	67	57	81
Bucks	38	23	32	23	23	25	21
Chester	12	16	18	14	20	19	22
Delaware	33	23	27	24	23	24	32
Montgomery	26	35	33	37	28	29	44
Philadelphia	127	138	129	132	111	123	140
Pennsylvania Total	236	235	239	230	205	220	259
Regional Total	348	328	347	311	272	277	340
Fatalities	84	91	108	96	116	85	119
Serious Injuries	264	237	239	215	156	192	221

Table 3.20: Trend in KSI in Which Pedestrians or Bicyclists Were Involved

Strategies

Table 3.21 shows the strategies identified by the RSTF to address pedestrian and bicyclist safety in the region. These strategies were drawn from the 2017 Pennsylvania SHSP, the 2015 New Jersey SHSP, DVRPC's 2015 TSAP, and input from participants in

the RSTF during a special strategies session held in the summer of 2017. Note that legislative strategies recommended by safety partners do not constitute endorsement by specific agencies. Priority strategies are bolded.

Table 3.21: RSTF Key Strategies to Promote Pedestrian and Bicyclist Safety in the Greater Philadelphia Region

Key Strategies	Education	Engineering	Enforcement	Policy
Educate the public about existing traffic safety laws and safe practices, including the responsibilities of drivers, pedestrians, and bicyclists, as well as policies that can increase pedestrian and bicyclist safety if implemented locally (like Safe Routes to School).	√			
Implement infrastructure and roadway improvements to support speed management (e.g., road diet, curb bump-outs, on-street parking) to reduce risk of pedestrian and bicyclist fatalities, and lessen the severity in the event of a crash.		\checkmark		
Promote adoption and implementation of policies that prioritize pedestrian and bicycle safety through municipal land use regulations and infrastructure improvements that increase multimodal network connectivity, such as Livable Communities, Complete Streets, and Vision Zero policies.	✓			✓
Raise awareness of local and national data-driven best practices to improve pedestrian and bicycle safety in the region.		\checkmark		
Explore and evaluate ways to enforce minor infractions on the part of all road users that can lead to potentially serious crashes involving bicyclists and pedestrians, like New Jersey's Pedestrian Decoy Program.	~		✓	
Work with police, hospitals, and other traffic safety professionals to begin to accurately capture the incidence of pedestrian and bicyclist crashes where a motor vehicle was not involved (in both Pennsylvania and New Jersey, a crash must involve a motor vehicle to be captured on a police crash reporting form).				✓
Explore ways to tie DMV fees and traffic violation fines to programs that will increase safety for pedestrians and bicyclists, like Pennsylvania's Automated Red Light Enforcement grant program.				~

Source: DVRPC

76 🚍 🖗 🚍 🖨 🚷

Programs and Policies

Table 3.22 identifies a sample of the existing programs and policies in the Greater Philadelphia region to promote pedestrian and bicyclist safety. Although programs and policies are confined to a single category for the purposes of this document,

they may have benefits in multiple categories. Many of the current policies and programs to promote pedestrian and bicyclist safety reflect the priorities identified in Table 3.21, such as the Safe Routes to School and Pedestrian Decoy programs.

Table 3.22: Programs and Policies Available in the Greater Philadelphia Region that Help Promote Pedestrian and Bicyclist Safety

Engineering

Local Technical Assistance Program Walkable Communities program (NJDOT, NJDHTS, PennDOT)

Pedestrian devices at railroad stations, including at-grade crosswalks with intertrack fencings, dedicated over- or underpasses, and audio/visual warning devices (SEPTA)

Retiming intersections for pedestrian walk times (Philadelphia Streets Department)

Safe Routes to School Program (Philadelphia Streets Department; PennDOT; NJDOT; NJDHTS; Greater Mercer TMA; Burlington, Camden, and Gloucester Counties Traffic Safety Task Force)

Regional Systemic Pilot Roundabout Program (NJDOT)

Enforcement

Safe Streets to Transit Program, Pedestrian Safety Corridor Program (DVRPC, NJDOT and NJDHTS)

NJDHTS-funded Pedestrian Decoy Program (municipal police forces in New Jersey)

DOT-funded Safe Routes to School Program (available to all municipalities)

School crossing guards (general)

Cops in Crosswalks (Chester County Highway Safety Project)

Education

New Jersey Pedestrian Safety Action Plan and Toolbox, Complete Streets policy support (NJDOT)

FHWA-designated Pedestrian Focus City (Philadelphia) and State (NJDOT, PennDOT, and NJDHTS)

Street Smart Pedestrian Safety Program (NJDHTS)

Philadelphia Complete Streets Design Handbook (City of Philadelphia)

"Otto the Auto": talking robot car used for elementary school safety programs (Mid-Atlantic Foundation for Safety and Education/AAA)

Pennsylvania Bicycle and Pedestrian Master Plan (PennDOT)

Senior Safety Pedestrian Program and Safe Routes to School presentations (Greater Mercer TMA)

Child Walk to School Day, school guidance on both operation and safety efforts of "Walking School Bus" (Cross County Connection TMA)

Older Drivers

- Older drivers are more likely to be seriously injured or killed in a crash than are other drivers.
- By 2030, 73.1 million Americans are expected to be 65 years old or older, compared to 49.2 million in 2016, highlighting the need to address older driver safety in the coming years.

Sustaining Mobility

Older drivers, who are 65 years old or older, are more likely to be seriously injured or killed in a crash than other drivers, as susceptibility to injury and medical complications increases with age. Older drivers may also be more likely to crash due to impaired eyesight and slower reaction times, according to the Transportation Research Board. In fact, according to the Insurance Institute for Highway Safety, only young drivers—between the ages of 16 and 20—have higher rates of fatal crashes than older drivers.

This is why some states require vision tests for older drivers who want to renew their licenses, require in-person renewal, or require renewal more often than is required for younger drivers. However, neither Pennsylvania nor New Jersey place such restrictions on older drivers. In 2015, older adults comprised 18 percent of all traffic fatalities in the United States. In the Greater Philadelphia region as well, 18 percent of KSI crashes involved older drivers between 2013 **and 2015.** As the proportion of older Americans grows and life expectancy increases, this issue will only worsen; by 2030, 73.1 million Americans are expected to be 65 years old or older. In 2016, only 49.2 million Americans were 65 years old or older.

Figure 3.16 shows the average number and

Older drivers are more likely to be seriously injured in a crash than are younger drivers.

Figure 3.16: Importance of Promoting Older Driver Safety by County

percentage of all KSI crashes by county in which an older driver was a factor. Montgomery County has the highest average number of KSI involving older drivers in the region, followed by Bucks and Philadelphia counties. The highest KSI rates involving older drivers, however, are in Mercer, Camden and Burlington counties. Despite having the third-highest average number of KSI crashes involving older drivers, Philadelphia has the lowest rate of these types of crashes in the region.

Rates by Municipality

Figure 3.17, on the next page, maps the rate of KSI crashes that involved an older driver by municipality in Pennsylvania and New Jersey (Philadelphia County is broken down by planning district). Older driver KSI rates tend to be higher in suburban and rural municipalities, such as in Bucks, Chester, Burlington and Gloucester counties, and lower in urban municipalities, like Philadelphia and Trenton.

Sources: PennDOT, NJDOT, DVRPC

Figure 3.17: Older Driver KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016

Sources: PennDOT, NJDOT, DVRPC

Overlapping Emphasis Areas

Older driver crashes overlapped disproportionately with intersection and aggressive driving crashes (see Table 3.3). Of all fatal and injury crashes in the region, 45.5 percent occurred at an intersection, compared to 52.1 percent of fatal and injury intersection crashes that also involved an older driver. Likewise, aggressive driving was a factor in 17.2 percent of all fatal and injury crashes in the region, compared to 20.6 percent of fatal and injury crashes that involved older drivers.

80 🖨 🖗 🖨 🈫 🚯

Table 3.23 shows the year-over-year trend in KSI by county that involved older drivers. The regional trend remained consistent between 221 and 259 KSI

per year from 2010 to 2015. In 2016, however, the number of older driver KSI jumped to 291.

County	2010	2011	2012	2013	2014	2015	2016
Burlington	29	38	46	25	27	29	21
Camden	21	25	20	27	32	23	25
Gloucester	15	25	13	21	21	11	18
Mercer	13	17	16	15	18	19	7
New Jersey Total	78	105	95	88	98	82	71
Bucks	43	29	40	36	24	42	51
Chester	26	22	32	22	26	24	38
Delaware	29	25	11	32	19	21	33
Montgomery	29	20	34	48	39	34	48
Philadelphia	30	20	34	33	32	29	50
Pennsylvania Total	157	116	151	171	140	150	220
Regional Total	235	221	246	259	238	232	291
Fatalities	64	80	60	86	86	78	75
Serious Injuries	171	141	186	173	152	154	216

Table 3.23: Trend in KSI That Involved an Older Driver

Strategies

Table 3.24 shows the strategies identified by the RSTF to promote older driver safety in the region. These strategies were drawn from the 2017 Pennsylvania SHSP, the 2015 New Jersey SHSP, DVRPC's 2015 TSAP, and input from participants in the RSTF during

a special strategies session held in the summer of 2017. Note that legislative strategies recommended by safety partners do not constitute endorsement by specific agencies. Priority strategies are bolded.

Table 3.24: RSTF Key Strategies to Promote Older Driver Safety in the Greater Philadelphia Region

Key Strategies	Education	Engineering	Enforcement	Policy
Explore Pennsylvania and New Jersey driver's license retesting requirements that would inform a change to current policy, including practices from other states (such as Maryland's Silver Alert retesting requirement).	~			~
Communicate to the public about "transportation retirement" and the need for seniors, adult children, and caretakers to begin planning for a carless future for aging drivers.	\checkmark			
Promote use of best practices in senior-safe roadway design, like clear, concise messaging and highly legible design elements.	\checkmark	\checkmark		
Promote senior housing in walkable communities through municipal land use regulation and education to the public (particularly seniors and adult children/caretakers) about housing choices that enable a wider range of transportation options that are close to services and resources.		\checkmark		~
Partner with hospitals, universities, and other research groups to study trends unique to older drivers and develop new educational programs based on this data.	\checkmark			
Publicize and coordinate to improve mobility alternatives to driving, including walking, public transportation, and new technology like ridesharing apps.	\checkmark			✓

Source: DVRPC

Programs and Policies

Table 3.25 identifies a sample of the existing programs and policies in the Greater Philadelphia region to promote older driver safety. Although programs and policies are confined to a single category for the purposes of this document, they may have benefits in multiple categories. Many of the current policies and programs to promote older driver safety reflect the priorities identified in Table 3.24, including both the PennDOT and the Burlington County Engineering Department senior-safe roadway design initiatives, and SEPTA, New Jersey Transit, and the Port Authority Transit Corporation's (PATCO's) efforts to improve the accessibility to transit for seniors.

Table 3.25: Programs and Policies in the Greater Philadelphia Region That Help Promote Older Driver Safety

Engineering

Sign improvements: Clearview font; larger, higher, advance warning signs (PennDOT, Burlington County Engineering Department)

CCT Connect Services (SEPTA)

Senior ID cards, senior discounts, shared-ride program (SEPTA)

Courtesy transportation for seniors (New Jersey Transit)

Reduced transit fare program (New Jersey Transit, PATCO, SEPTA)

TRADE Transportation demand-responsive transit for seniors funded by the Senior Citizen and Disabled Resident Transportation Assistance Program (Mercer County)

Ride Provide personal transportation for seniors, transit travel training program at senior centers (Greater Mercer TMA)

Enforcement

Pennsylvania Medically Impaired Driver Law (medical professionals, PennDOT)

Education

Car Fit program (AAA, AARP, Burlington County Sheriff's Department, Chester County Highway Safety Project, and NJDHTS)

Senior driver evaluation tools, Roadwise Rx, defensive driving refresher courses (AAA, AARP)

Ambassador program, personnel located at each station to provide assistance (PATCO)

AARP Driver Safety Program (Chester County Highway Safety Project)

Driver Simulation Program, Fitness-to-Drive screening tool, Smart Driver Course, Safe Driver Videos, Livable Communities Campaign (AARP)

Roadwise Review DVD (AAA Mid-Atlantic Foundation for Safety and Education)

Skill testing for seniors to check for alertness, eye sight, etc. (Virtua Hospital and other local hospitals)

Senior Defensive Driver Program, Senior Safety Task Force (NJDHTS)

Senior Pedestrian Safety Program (Greater Mercer TMA)

Policy

Classic Towns of Greater Philadelphia, Transit-Oritented Development (DVRPC)

Young Drivers

- Young drivers between 16 and 20 years old have the highest crash rate of any age group.
- New Jersey and Pennsylvania have some of the strictest graduated driver licensing programs in the nation.

The Next Generation

Young drivers, defined in this analysis as those between 16 and 20 years old, are more likely to be in a crash due to their inexperience behind the wheel; in fact, they have the highest crash rate of any age group. In addition, due to their greater propensity for risky behaviors, such as not wearing a seatbelt, speeding, or driving under the influence of drugs or alcohol, young drivers are also more likely to be seriously injured or killed in a crash. As a result, motor vehicle crashes were the leading cause of death for 16-to-20-year-olds in the United States between 2013 and 2015, according to the Centers for Disease Control and Prevention (CDC).

Twelve percent of traffic fatalities and serious injuries in the Greater Philadelphia region between 2013 and 2015 involved young drivers. Both Pennsylvania and New Jersey have graduated driver licensing (GDL) programs, which place certain restrictions on young drivers as they learn how to drive and for some time afterward. New Jersey is unique in that it has a minimum licensing age of 17, whereas Pennsylvania requires the most supervised driving hours of any state, at 65. Studies show that states with strict GDL programs have fewer fatal crashes involving young drivers than do states with more lax programs.

Young drivers have the highest crash rate of any age group.

84 😑 🖗 😑 🈫 🚯

Figure 3.18: Importance of Promoting Young Driver Safety by County

Sources: PennDOT, NJDOT, DVRPC

Figure 3.18 shows the average number and percentage of all crashes by county in which a young driver was a factor. Philadelphia had the largest average number of KSI in which young drivers were a factor from 2013 to 2015, but the fourth-lowest overall percentage. The highest percentage of all KSI that involved a young driver was in Chester County, followed by Bucks County. New Jersey counties in the Greater Philadelphia region generally saw lower rates of young driver KSI crashes, with the highest in Gloucester County and the lowest in the region in Mercer County.

Rates by Municipality

Figure 3.19, on the next page, maps the rate of KSI crashes that involved a young driver by municipality in Pennsylvania and New Jersey (Philadelphia County is broken down by planning district). Young driver KSI rates were generally higher in municipalities in rural Pennsylvania than in the rest of the region. In New Jersey, young driver KSI rates were highest in southern Gloucester County.

Figure 3.19: Young Driver KSI Crash Rate by AADT by Municipality or Planning District (Philadelphia), 2012–2016

Sources: PennDOT, NJDOT, DVRPC

Overlapping Emphasis Areas

Young driver crashes overlapped disproportionately with distracted driving and aggressive driving crashes (see Table 3.3). Distracted driving was a factor in 25.7 percent of all fatal and injury crashes in the region, compared to 30.5 percent of fatal and injury distracted driving crashes that also involved a young driver. Likewise, aggressive driving was a factor in 17.2 percent of all fatal and injury crashes in the region, compared to 22.6 percent of fatal and injury crashes that involved a young driver.

86 😑 🚯 😑 🈫 🚯

Table 3.26 shows the year-over-year trend in KSI by county where a young driver was a factor. The number of KSI rose in both 2015 and 2016 after decreasing steadily between 2010 and 2014.

County	2010	2011	2012	2013	2014	2015	2016
Burlington	28	22	21	20	13	9	10
Camden	23	13	22	13	23	15	16
Gloucester	21	14	18	17	26	13	10
Mercer	16	11	9	5	9	3	4
New Jersey Total	88	60	70	55	71	40	40
Bucks	33	23	41	26	16	29	40
Chester	47	41	17	29	17	23	22
Delaware	26	21	13	17	3	13	22
Montgomery	41	38	35	19	16	21	27
Philadelphia	30	41	39	33	23	35	31
Pennsylvania Total	177	164	145	124	75	121	142
Regional Total	265	224	215	179	146	161	182
Fatalities	52	60	45	41	36	44	40
Serious Injuries	213	164	170	138	110	117	142

Table 3.26: Trend in KSI That Involved a Young Driver

Strategies

Table 3.27 shows the strategies identified by the RSTF to promote young driver safety in the region. These strategies were drawn from the 2017 Pennsylvania SHSP, the 2015 New Jersey SHSP, DVRPC's 2015 TSAP, and input from participants in the RSTF during

a special strategies session held in the summer of 2017. Note that legislative strategies recommended by safety partners do not constitute endorsement by specific agencies. Age-specific strategies tend to be education focused. Priority strategies are bolded.

Table 3.27: RSTF Key Strategies to Promote Young Driver Safety in the Greater Philadelphia Region

Key Strategies	Education	Engineering	Enforcement	Policy
Incentivize schools to better incorporate safety programs, such as making driver education programs mandatory and tying parking permits to participation in programs like Share the Keys.	✓			✓
Identify locations with large young driver populations and significant crash trends for consideration of improvements; share this information with municipalities and school districts to advance a safety culture.	\checkmark	\checkmark		
Partner with hospitals, universities, and other research groups to study trends unique to young drivers and develop new educational programs, including ones that emphasize peer-to-peer engagement.	~			
Educate young drivers and parents/guardians on the increased risk of a crash when Graduated Driver Licensing (GDL) requirements are violated.	\checkmark			
Work with insurance companies to create financial incentives for increased participation in young driver safety programs.				~
Ensure GDL violations and penalties are enforced and tracked, such as license plate stickers in New Jersey. Align GDL requirements in Pennsylvania with New Jersey.			\checkmark	
Explore policy recommendations that shift focus from the age of the driver to their level of experience.				~
Spread the word about local and national young driver safety education and media campaigns (e.g., Gloucester County Highway Safety Task Force's high school video contest).	\checkmark			

Source: DVRPC

Programs and Policies

Table 3.28 identifies a sample of the existing programs and policies in the Greater Philadelphia region to promote young driver safety. Although programs and policies are confined to a single category for the purposes of this document, they may have benefits in multiple categories. Many of the current policies and programs to promote young driver safety reflect the priorities identified in Table 3.27, such as New Jersey State Police's Graduated Driver Licensing Decal Program.

Table 3.28: Programs and Policies in the Greater Philadelphia Region That Help Promote Young Driver Safety

Engineering

Graduated Driver Licensing Decal Program (New Jersey State Police)

Graduated Driver Licensing Program (Pennsylvania, New Jersey)

Education

New Jersey Drive: educates young drivers on the consequences of DUI (New Jersey State Police)

Share the Keys: parent/child contract seminar (New Jersey and Pennsylvania)

Teen Driver Safety Video PSA Challenge (TMA Bucks)

How to Park: The Must-Read Manual for Teen Drivers (AAA Mid-Atlantic Foundation for Safety and Education)

Consumer safety brochure on choosing the best vehicle for your teen (Insurance Institute for Highway Safety)

"Survival 101" youth program, "16 Minutes" youth program (Buckle Up PA)

Cruisin' SMART: young driver peer-to-peer DUI program (Bryn Mawr Rehab Hospital)

Teen Safe Driving Competition (PennDOT and partners, Brain Injury Alliance of New Jersey)

Seat Belt Use

NHTSA estimates that the national seat belt use rate was 90 percent in 2016, compared to 81 percent just 10 years earlier in 2006. States in which failure to wear a seat belt is a primary offense, which means that drivers can be pulled over for that offense alone, have a higher rate of seat belt use than do states in which it is not (92 and 83 percent, respectively). Not wearing a seat belt is a primary offense in 37 states, including New Jersey. In Pennsylvania, not wearing a seat belt is only a primary offense for children under 18. Seat belts have been shown to reduce the risk of death by 45 percent and the risk of serious injury by 50 percent for drivers and front-seat passengers.

Not using a seat belt was a contributing factor in 12 percent of KSI crashes in the Greater Philadelphia region between 2013 and 2015.

Table 3.29 shows the year-over-year trend in KSI by county where seat belt use (unbelted) was a factor. The regional trend in unbelted KSI has fluctuated since 2010. Between 2010 and 2015, the number of KSI decreased from 378 to 316, but it rose again to 398 in 2016.

Table 3.30 shows the strategies identified by the RSTF to promote seat belt use in the region. These strategies were drawn from the 2017 Pennsylvania

County	2010	2011	2012	2013	2014	2015	2016
Burlington	28	25	27	21	31	21	19
Camden	26	27	28	14	26	12	17
Gloucester	17	20	15	23	38	17	9
Mercer	17	8	8	9	10	8	4
New Jersey Total	88	80	78	67	105	58	49
Bucks	50	85	63	47	30	74	67
Chester	63	50	42	50	58	48	46
Delaware	39	35	30	40	33	30	55
Montgomery	64	70	82	64	61	40	76
Philadelphia	74	94	80	49	66	66	105
Pennsylvania Total	290	334	297	250	248	258	349
Regional Total	378	414	375	317	353	316	398
Fatalities	105	104	117	90	96	96	86
Serious Injuries	273	310	258	227	257	220	312

Table 3.29: Trend in KSI in Which One or More Persons Were Unbelted

Sources: PennDOT, NJDOT, DVRPC

SHSP, the 2015 New Jersey SHSP, DVRPC's 2015 TSAP, and input from participants in the RSTF during a special strategies session held in the summer of 2017. Note that legislative strategies recommended by safety partners do not constitute endorsement by specific agencies. Priority strategies are bolded.

Table 3.31 identifies a sample of the existing programs and policies in the Greater Philadelphia region to promote seat belt use. Although programs and policies are confined to a single category for the purposes of this document, they may have benefits in multiple categories.

Table 3.30: RSTF Key Strategies to Address Seat Belt Use in the Greater Philadelphia Region

Key Strategies	Education	Engineering	Enforcement	Policy
Enact and enforce primary seat belt laws in Pennsylvania and support primary seat belt legislation covering all passengers in all seating positions in New Jersey.				✓
Promote legislation to increase fines for violating seat belt and child restraint laws.			\checkmark	\checkmark
Implement parent education programs on topics related to child restraints and child occupant safety practices.	\checkmark			
Continue to conduct high-profile child passenger safety inspection clinic events at multiple community locations to educate on the proper use of restraint devices.	\checkmark			
Focus on night-time seat belt enforcements, when usage is lowest.			\checkmark	
Provide access to appropriate information, materials, and guidelines for those implementing programs to increase occupant restraint use.	\checkmark			

Source: DVRPC

Table 3.31: Programs and Policies in the Greater Philadelphia Region That Promote Seat Belt Use

Enforcement

High-visibility enforcement campaigns, such as Click It or Ticket (NJDOT, PennDOT)

Education

Child safety seat checks (NJDHTS, Children's Hospital of Philadelphia, Safe Kids Pennsylvania & New Jersey)

Child seat loan program (Pennsylvania Traffic Injury Prevention Project)

Partner with employers to develop seat belt policies (NJDHTS)

Heavy Truck-Related

Six percent of KSI crashes in the region between 2013 and 2015 involved a heavy truck. Heavy trucks are defined by NHTSA as any vehicle, except for a bus or a motor home, that weighs more than 10,000 pounds. In recent years, fatalities resulting from heavy truck crashes have been on the rise across the country; between 2009 and 2015, the number of fatalities increased by 20 percent from 3,380 to 4,067. Although heavy truck frequency is comparatively low, crash severity is high.

Heavy trucks are more likely to be in a crash because they have larger blind spots and a wider turning radius than those of other vehicles. In addition, because of their weight, they have a longer stopping distance than a passenger vehicle does. Their heavier weight also affords the occupants of heavy trucks more protection than a passenger vehicle does. Of those 4,067 fatalities in 2015 that involved a heavy truck, only 16 percent were occupants of heavy trucks.

In order to address the recent rise in traffic fatalities resulting from heavy truck crashes, Congress mandated electronic logging devices to help enforce legal limits on the number of hours a truck driver may drive per day to combat drowsy driving. Legally, truck drivers may only drive 11 hours within a 14-hour workday, and must be off duty for 10 hours afterward. The new congressional mandate went into effect in December 2017.

County	2010	2011	2012	2013	2014	2015	2016
Burlington	21	16	17	10	12	9	15
Camden	11	16	6	8	6	8	6
Gloucester	14	7	12	6	11	12	4
Mercer	10	4	9	10	13	3	9
New Jersey Total	56	43	44	34	42	32	34
Bucks	16	21	11	14	13	13	13
Chester	11	13	13	6	13	15	20
Delaware	5	6	7	7	3	5	9
Montgomery	8	17	14	10	12	12	14
Philadelphia	19	6	19	13	12	11	24
Pennsylvania Total	59	63	64	50	53	56	80
Regional Total	115	106	108	84	95	88	114
Fatalities	35	32	40	40	44	29	33
Serious Injuries	80	74	68	44	51	59	81

Table 3.32: Trend in KSI That Involved a Heavy Truck

Sources: PennDOT, NJDOT, DVRPC

Table 3.32 shows the year-over-year trend in KSI by county that were heavy truck-related. The regional trend in heavy truck-related KSI has fluctuated since 2010. Between 2010 and 2015, the number of KSI decreased from 115 to 88, but rose again in 2016 to 114.

Table 3.33 shows the strategies identified by the RSTF to promote truck safety in the region. These strategies were drawn from the 2017 Pennsylvania SHSP, the 2015 New Jersey SHSP, DVRPC's 2015 TSAP, and input from participants in the RSTF during a special strategies session held in the summer of 2017. Note that legislative strategies recommended

by safety partners do not constitute endorsement by specific agencies. Priority strategies are bolded.

Table 3.34 identifies a sample of the existing programs and policies in the Greater Philadelphia region to promote truck safety. Although programs and policies are confined to a single category for the purposes of this document, they may have benefits in multiple categories. Regarding heavy truck safety, both states enforce regulations that ensure drivers are abiding by the drive/sleep rules, and weight restrictions, and both states have education programs for other drivers to promote safe driving practices around heavy trucks.

Table 3.33: RSTF Key Strategies to Promote Truck Safety in the Greater Philadelphia Region

Key Strategies	Education	Engineering	Enforcement	Policy
Improve access between the state highway network and truck generators to reduce interactions between heavy trucks and passenger vehicles.		✓		
Use traffic and crash data to identify critical corridors for focused enforcement.			\checkmark	
Promote vehicle safety technologies for commercial vehicles and their drivers.	\checkmark			\checkmark
Promote development of a regional system for truck and bus parking facilities to reduce driver fatigue.		\checkmark		
Consider commercial vehicle safety and size/weight enforcement in the planning, design, and operation of the regional transportation system.		\checkmark		
Promote trucks equipped with added safety measures such as under-ride guards, especially for fleets serving urban areas.	\checkmark			

Source: DVRPC

Table 3.34: Programs and Policies in the Greater Philadelphia Region That Promote Truck Safety

Education

New Jersey and Pennsylvania participate with the federal government in the Motor Carrier Safety Assistance Program, a grant program to reduce commercial motor vehicle accidents, fatalities, and injuries through consistent, uniform, and effective safety programs for trucks and buses.

Motorcycle Safety

Motorcyclists were involved in 4 percent of KSI crashes in the Greater Philadelphia region between 2013 and 2015. NHTSA estimates that motorcyclists were 27 times more likely to die in a crash than occupants of other vehicles, because motorcycles afford very little protection in a crash compared to passenger vehicles. Furthermore, NHTSA estimates that only 64 percent of motorcyclists wore DOT-compliant helmets in 2015. New Jersey requires all motorcyclists to wear DOT-compliant helmets, whereas Pennsylvania only requires a DOT-compliant helmets in 2015 of age or for those

riders with less than two years of riding experience, or who have not completed a PennDOT-approved motorcycle safety course.

Table 3.35 shows the year-over-year trend in KSI by county that involved a motorcycle. In 2016, the number of motorcycle KSI rose again after experiencing a significant drop from 2010 to 2015.

Table 3.36 shows the strategies identified by the RSTF to promote motorcycle safety in the region. These strategies were drawn from the 2017 Pennsylvania SHSP, the 2015 New Jersey SHSP, DVRPC's 2015

County	2010	2011	2012	2013	2014	2015	2016
Burlington	22	18	18	11	16	12	13
Camden	14	19	15	7	12	10	12
Gloucester	17	8	12	11	20	7	10
Mercer	7	8	2	5	5	3	5
New Jersey Total	60	53	47	34	53	32	40
Bucks	35	36	49	36	20	34	55
Chester	30	27	21	23	22	26	33
Delaware	19	19	18	21	16	11	28
Montgomery	29	18	28	25	16	28	42
Philadelphia	48	60	40	42	53	34	42
Pennsylvania Total	161	160	156	147	127	133	200
Regional Total	221	213	203	181	180	165	240
Fatalities	60	64	61	61	54	51	66
Serious Injuries	141	149	142	120	126	114	174

Table 3.35: Trend in KSI That Involved a Motorcycle

Sources: PennDOT, NJDOT, DVRPC

TSAP, and input from participants in the RSTF during a special strategies session held in the summer of 2017. Note that legislative strategies recommended by safety partners do not constitute endorsement by specific agencies. Proper roadway maintenance provides safety benefits for users and is especially important for motorcycle safety. Priority strategies are bolded. Table 3.37 identifies a sample of the existing programs and policies in the Greater Philadelphia region to promote motorcycle safety. Although programs and policies are confined to a single category for the purposes of this document, they may have benefits in multiple categories.

Table 3.36: RSTF Key Strategies to Address Motorcycle Safety in the Greater Philadelphia Region

Education	Engineering	Enforcement	Policy
			✓
\checkmark			
\checkmark			
	\checkmark		
\checkmark	\checkmark		
	Education ✓ ✓	Education Engineering ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Education Engineering Enforcement ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Source: DVRPC

Table 3.37: Programs and Policies in the Greater Philadelphia Region That Help Promote Motorcycle Safety

Education

Pennsylvania Motorcycle Safety Program courses (PennDOT)

Motorcycle Basic and Experienced Rider courses (New Jersey Motor Vehicle Commission)

Work Zone Safety

Two percent of KSI crashes in the Greater Philadelphia region between 2013 and 2015 occurred in a work zone. A work zone is an area of a roadway that is undergoing construction or maintenance, often resulting in lane closures and detours. In Pennsylvania, fines are doubled for speeding, impaired driving, and failure to obey traffic devices in an active work zone, and those convicted of homicide by vehicle for a crash in an active work zone face an additional five years of jail time. "Excessive speeding," or driving 11 miles per hour or more above the posted speed limit in an active work zone, can result in a 15-day suspension of a driver's license. New Jersey has similarly increased penalties for all moving violations in both inactive and active work zones. In Pennsylvania, Senate Bill 172 recently authorized the use of automated speed enforcement in work zones in order to better enforce these laws, while New Jersey is currently considering similar legislation (A5082).

Table 3.38 shows the year-over-year trend in KSI by county that occurred in a work zone. The regional trend in work zone KSI has remained fairly constant since 2010. This is one of the few emphasis areas that has not followed the national trend. Notably, the number of fatalities that occurred in a work zone decreased from 14 in 2012 to 2 in 2016.

County	2010	2011	2012	2013	2014	2015	2016
Burlington	8	9	6	1	2	0	1
Camden	4	6	3	5	7	0	3
Gloucester	2	2	0	0	0	2	1
Mercer	0	1	5	2	2	0	0
New Jersey Total	14	18	14	8	11	2	5
Bucks	2	2	1	3	3	10	3
Chester	0	2	2	1	3	7	1
Delaware	0	1	3	0	0	1	2
Montgomery	2	8	8	9	3	1	9
Philadelphia	6	0	6	1	4	3	0
Pennsylvania Total	10	13	20	14	13	22	15
Regional Total	24	31	34	22	24	24	20
Fatalities	7	11	14	5	10	9	2
Serious Injuries	17	20	20	17	14	15	18

Table 3.38: Trend in KSI That Occurred in a Work Zone

Sources: PennDOT, NJDOT, DVRPC

Table 3.39 shows the strategies identified by the RSTF to promote work zone safety in the region. These strategies were drawn from the 2017 Pennsylvania SHSP, the 2015 New Jersey SHSP, DVRPC's 2015 TSAP, and input from participants in the RSTF during a special strategies session held in the summer of 2017. Note that legislative strategies recommended by safety partners do not constitute endorsement by specific agencies. Priority strategies are bolded.

Table 3.40 identifies a sample of the existing programs and policies in the Greater Philadelphia region to promote safety in work zones. Although programs and policies are confined to a single category for the purposes of this document, they may have benefits in multiple categories.

Table 3.39: RSTF Key Strategies to Address Safety in Work Zones in the Greater Philadelphia Region

Key Strategies	Education	Engineering	Enforcement	Policy
Improve speed management and enforcement in work zones.			\checkmark	
Support legislation in New Jersey for automated traffic enforcement, including pervasive automated speed enforcement and applications for work zones.			\checkmark	✓
Educate workers on safety practices in work zones and promote campaigns like National Work Zone Awareness Week and Operation Orange Squeeze.	\checkmark			
Accommodate non-motorized users in design of traffic control plans for work zones.		\checkmark		
Provide work zone training to law enforcement and first responders.	\checkmark			
Participate in and promote work zone safety public awareness initiatives.	\checkmark			

Source: DVRPC

Table 3.40: Programs and Policies in the Greater Philadelphia Region That Promote Work Zone Safety

Enforcement

Operation Orange Squeeze (Pennsylvania Turnpike Commission and Pennsylvania State Police)

License suspension and increased fines and jail time for active work zone violations (PennDOT)

Automated Speed Enforcement in Work Zones (PennDOT and Pennsylvania Turnpike Commission)

Education

Work Zone Safety Awareness Workshop (Rutgers Center for Advanced Infrastructure and Transportation— New Jersey)

Sources: PennDOT, NJDOT, DVRPC

REGIONAL SAFETY EMPHASIS AREAS: WORK ZONE SAFETY

Train and Trolley

Seven fatalities and serious injuries resulted from a crash between a vehicle and a train or trolley between 2013 and 2015 in the region. While crashes between a vehicle and a train are rare—given that train traffic is often separated from automobile traffic, with very few at-grade crossings—crashes between a vehicle and a trolley are more likely, given that trolleys operate on the street alongside automobiles. There are exceptions, including SEPTA's regional rail service, which is a legacy system built at grade with many at-grade crossings.

In southeastern Pennsylvania, SEPTA operates eight trolley lines within Philadelphia and Delaware

counties. Because trolleys operate in automobile traffic, but are still fixed to a track, they are often unable to avoid dangerous situations, such as a driver making an illegal U-turn in front of them, as they lack the maneuverability of an automobile. Additionally, because trolleys transport large numbers of people, there is potential for a large number of people to be injured or killed in a trolley-vehicle crash, despite these crashes occurring relatively infrequently compared to vehicle-vehicle crashes.

Table 3.41 shows the year-over-year trend in KSI by county that involved a train or trolley. The regional trend in train and trolley KSI has fluctuated since

County	2010	2011	2012	2013	2014	2015	2016
Burlington	0	0	0	0	0	1	1
Camden	2	1	0	0	0	0	0
Gloucester	0	0	0	0	0	0	0
Mercer	0	0	0	1	0	0	0
New Jersey Total	2	1	0	1	0	1	1
Bucks	0	0	0	0	0	0	0
Chester	0	0	0	0	0	0	0
Delaware	0	0	0	0	0	1	0
Montgomery	0	0	0	0	1	0	4
Philadelphia	2	0	1	0	1	2	0
Pennsylvania Total	2	0	1	0	2	3	4
Regional Total	4	1	1	1	2	4	5
Fatalities	2	1	0	2	2	3	2
Serious Injuries	2	0	1	0	0	1	3

Table 3.41: Trend in KSI That Involved a Train or Trolley

Sources: PennDOT, NJDOT, DVRPC

2010. Between 2013 and 2016, the number of KSI crashes increased from one to five.

Table 3.42 shows the strategies identified by the RSTF to reduce train and trolley crashes in the region. These strategies were drawn from the 2017 Pennsylvania SHSP, the 2015 New Jersey SHSP, DVRPC's 2015 TSAP, and input from participants in the RSTF during a special strategies session held in the summer of 2017. Note that legislative strategies recommended by safety partners do not constitute endorsement by specific agencies. Priority strategies are bolded.

Table 3.43 identifies a sample of the existing programs and policies in the Greater Philadelphia region to reduce train and trolley crashes. Although programs and policies are confined to a single category for the purposes of this document, they may have benefits in multiple categories.

Table 3.42: RSTF Key Strategies to Address Safety for Trains and Trolleys in the Greater Philadelphia Region

Key Strategies	Education	Engineering	Enforcement	Policy
Use crash and violation data to target problematic intersections.			\checkmark	
Implement safety countermeasures at crossings with high pedestrian traffic.		\checkmark		
Identify high crash potential crossings for improvements or enforcement.		\checkmark	\checkmark	
Improve visibility at grade crossings by removing obstacles (e.g., trees, fences, and buildings) that prevent drivers from having a clear view of approaching trains.		\checkmark		
Promote enforcement campaigns and increase their visibility.			\checkmark	
Partner with freight railroads and Amtrak to promote public awareness.	\checkmark			

Source: DVRPC

Table 3.43: Programs and Policies in the Greater Philadelphia Region That Promote Safety for Trains and Trolleys

Education	
Safety Awareness For Everyone (New Jersey Transit)	

County	Municipality	Road	Population	Average Annual	Killed	& Serious Inji	ury Crashes, 2	2012-2016	(Non-inters	tate)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^ª	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Burlington	Bass River Township	338	1,481	556,434,533	15	τ	11	Q	7	0	വ	0	m
Burlington	Beverly City	25	2,573	10,275,988	2	Ч	0	7	0	с і	0	0	L I
Burlington	Bordentown City	25	3,912	21,842,329	с і	-	0	0	0	0	\leftarrow	0	0
Burlington	Bordentown Township	134	11,444	301,020,681	19	Ø	10	13		ю	9	0	7
Burlington	Burlington City	83	9,865	223,545,534	11	വ	9	4	m	m	2	0	L
Burlington	Burlington Township	240	22,613	569,316,293	11	N	4	4		Ţ	Ħ	7	വ
Burlington	Chesterfield Township	105	7,725	134,393,993	00	m	4	വ	0	0	Ч	0	4
Burlington	Cinnaminson Township	171	16,296	616,217,893	14	Ø	വ	വ	7	വ	4	7	വ
Burlington	Delanco Township	45	4,544	90,156,691	4	Ч	τ	0	0	0	0	H	Я
Burlington	Delran Township	148	16,856	439,767,651	17	Ø	ю	4	4	o	7	Ч.	4
Burlington	Eastampton Township	81	6,065	129,983,105	വ	0	4	ო	0	0	Ч	H	Ч
Burlington	Edgewater Park Township	74	8,854	277,286,338	00	7	ю	Ч	0	വ	7	Ч	ю
Burlington	Evesham Township	483	45,669	1,372,624,511	42	13	19	19	4	7	14	4	12
Burlington	Fieldsboro Borough	Q	603	2,184,696	0	0	0	0	0	0	0	0	0
Burlington	Florence Township	126	12,287	182,389,998	10	4	ო	4	ო	ო	Ч	H	ო
Burlington	Hainesport Township	97	6,118	360,382,232	12	ო	2	, ,	Ч.	വ	0	ო	വ
Burlington	Lumberton Township	143	12,511	295,662,141	17	7	00	9	4	7	0	4	വ
Burlington	Mansfield Township	131	8,554	334,898,739	10	0	9	00	2	-	m	0	Ţ

County	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	ury Crashes, 2	2012-2016	(Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^a	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Burlington	Maple Shade Township	135	19,075	784,924,086	16	ᠳ	ω	Q	7	Q	0	ю	4
Burlington	Medford Lakes Borough	59	4,138	43,457,728	Ч	0	0	त	0	0	0	0	0
Burlington	Medford Township	417	23,215	739,403,294	13	ო	ത	00	N	-	2	0	9
Burlington	Moorestown Township	271	20,686	794,367,534	15	ო	11	വ	വ	Ч	Q	0	വ
Burlington	Mount Holly Township	80	9,448	183,511,290	14	വ	4	4	Ø	7		ħ	9
Burlington	Mount Laurel Township	424	41,813	1,381,004,129	48	11	19	15	11	10	11	ი	17
Burlington	New Hanover Township	202	7,674	151,292,560	m	0	H	сц	L	7	₽ ₽	с і	L
Burlington	North Hanover Township	135	7,655	130,292,000	4	7	Ч	ო	0	Ч	7	с і	7
Burlington	Palmyra Borough	64	7,372	210,753,753	2	0	0	4	0	0	4	0	0
Burlington	Pemberton Borough	11	1,467	38,353,556	വ	с і	7	വ	0	0	0	7	7
Burlington	Pemberton Township	551	27,925	526,660,333	37	Ø	25	23	00	ო	00	വ	11
Burlington	Riverside Township	54	8,051	37,235,766	2	7	1	Ļ	L	0	0	0	L
Burlington	Riverton Borough	26	2,766	15,396,384	\leftarrow	Ч	0	0	0	0	₽.	0	L
Burlington	Shamong Township	240	6,461	234,078,260	n	7	9	m	0	0	L I	ო	വ
Burlington	Southampton Township	315	10,420	562,000,180	26	വ	œ	11	m	വ	00	7	7

County	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	jury Crashes,	2012-2016	3 (Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^a	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Burlington	Springfield Township	173	3,412	366,933,699	11	0	വ	വ	0	0	ო	0	m
Burlington	Tabernacle Township	246	6,983	134,483,830	16	0	7	വ	ო	7	m	ო	10
Burlington	Washington Township	443	827	45,432,149	œ	0	ω	ო	L	0	2	0	0
Burlington	Westampton Township	111	8,792	326,154,306	30	Ø	13	17	വ	4	10	0	16
Burlington	Willingboro Township	257	31,735	277,056,489	29	10	11	Ø	7	Ø	Q	വ	12
Burlington	Woodland Township	380	1,386	162,419,288	17	4	12	10	വ	L	വ	0	4
Burlington	Wrightstown Borough	30	884	30,281,355	0	0	0	0	0	0	0	0	0
Camden	Audubon Borough	71	8,763	187,197,167	4	0	0	7	7	त	L I	0	7
Camden	Audubon Park Borough	7	1,051	34,959,102	4	4	0	0	0	0	4	0	Ţ
Camden	Barrington Borough	50	6,904	159,312,818	2	0	0	0	0	0	L I	Ч	7
Camden	Bellmawr Borough	88	11,538	162,053,058	Ŋ	, I	0	N	N	L	4	0	m
Camden	Berlin Borough	100	7,587	284,929,414	11	9	m	ო	4	5	4	0	വ
Camden	Berlin Township	85	5,360	327,878,264	വ	4	L	H	2	0	ო	0	ო
Camden	Brooklawn Borough	18	1,879	114,152,803	2	0	Ţ	0	0	Ч	0	0	Ţ

County	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	ury Crashes, 2	2012-2016	(Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ª	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Camden	Camden City	389	77,294	933,065,465	76	33	26	33	თ	25	ത	10	30
Camden	Cherry Hill Township	715	71,152	2,708,073,971	66	33	14	21	ø	21	18	14	29
Camden	Chesilhurst Borough	47	1,675	36,877,561	4	0	0	Ч	0	0	4	0	0
Camden	Clementon Borough	60	4,972	165,458,405	Q	വ	7	വ	L	Ч	0	L I	5
Camden	Collingswood Borough	87	13,929	234,089,180	თ	9	വ	0	0	7	2	7	ო
Camden	Gibbsboro Borough	42	2,324	143,722,145	Ч	0	÷	L	0	0	0	0	0
Camden	Gloucester City	86	11,392	179,223,256	00	4	ო	ო	4	0	0	L I	0
Camden	Gloucester Township	543	64,356	1,184,350,357	40	13	14	12	თ	15	თ	9	13
Camden	Haddon Heights Borough	57	7,425	115,264,241	თ		0	L I	2	4	с і	0	4
Camden	Haddon Township	103	14,611	218,067,464	თ	т	ო	2	7	m	4	0	L
Camden	Haddonfield Borough	97	11,521	244,843,063	4	7	L I	0	0	7	2	с і	с і
Camden	Hi-Nella Borough	7	817	12,752,963	0	0	0	0	0	0	0	0	0
Camden	Laurel Springs Borough	19	1,910	14,031,108	H	Ч	0	0	0	Ч	0	0	0
Camden	Lawnside Borough	39	2,919	167,770,709	4	т	0	ч	0	m	0	0	5
Camden	Lindenwold Borough	139	17,512	321,567,074	17	00	4	თ	m	œ	m	сı	4

ounty	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	ury Crashes, 2	2012-2016	(Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^a	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
nden	Magnolia Borough	38	4,329	134,249,244	17	10	Ł	ø	7	7	7	7	7
nden	Merchantville Borough	22	3,803	43,903,232	ო	0	ri	0	L	0	0	0	-
nden	Mount Ephraim Borough	33	4,669	77,770,991	വ	L	0	÷	0	m	0	0	L
mden	Oaklyn Borough	26	4,022	53,632,206	4	0	0	, ,	0	L I	0	0	0
mden	Pennsauken Township	338	35,757	1,550,566,270	40	22	12	16	13	18	വ	7	10
mden	Pine Hill Borough	81	10,383	98,033,963	10	4	4	4	L	ო	2	0	m
mden	Pine Valley Borough	4	N	424,159	0	0	0	0	0	0	0	0	0
mden	Runnemede Borough	66	8,435	153,762,323	7	ო	4	0	L	0	4	L	7
mden	Somerdale Borough	55	5,246	188,079,820	Q	ო	0	ო	L	0	7	0	7
mden	Stratford Borough	57	6,997	115,133,885	4	H	Ч	7	0	H	m	L	L
mden	Tavistock Borough	2	თ	3,296,058	0	0	0	0	0	0	0	0	0
mden	Voorhees Township	293	29,227	723,326,519	47	23	13	11	0	വ	13	വ	22
mden	Waterford Township	325	10,683	278,552,981	7	0	വ	7	τ	0	7	τ	7
mden	Winslow Township	575	39,207	1,274,140,312	53	17	30	23	വ	7	16	10	26
mden	Woodlynne Borough	11	2,972	46,427,489	2	÷	L	ਜ	7	L	-	0	-

A6 🚍 🖗 🚍 🚇 🚱 🚯

	Aggres- sive	ო	7		ħ	4	4 4 8	ى 20 4 1	v u 2 4 4	4 7 10 7 7 7 7 4 7	4 8 2 0 4 0	α 0 4 0 Ω 7 4 4	9 0 7 7 0 2 7 7 7 1	4 7 2 2 7 4 7 5 0 ³⁰ 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 4 Ω Ω 4 7 0 ²⁰ 6 4 4
	Younger Driver	Ч	Ч		Ħ	τ m	н м 1	1 m 1 4	-1 m 1 4 0	1 m 17 4 0 m	1 m 4 0 m 0	1 m 4 0 m 0 1	1 m 97 4 0 m 0 1 ¹	1 m 97 4 0 m 0 7 1 0	1 m 9 4 0 m 0 1 1 0 0
	Older	0	4	,	ო	m a	19 19 7 9	m 19 10 m	тарана 1911 година 1911 годи 1911 годи 1911 година 1911 годи 1911	м и ^ф м н н	м и <mark>й</mark> м н н и	м ч ч м ч ч м	та с	о ⁶ м н н м ⁶ м	м ч й м н н м ⁶ о о
terstate)	d Pedes- trian & Bicycle	0	വ		0	0 0	O O 0	000			μυοαοο	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	μ η η ο α ο ο	ο ¹ , η η η ο α σ ο ο	
116 (Non-in	lmpaire d	Ч	4		-	e m	- ო თ	a o o b	n n n n	പ ന വ ന പ	н м о ю м н н	ты та	н м љ м и а м 1	н м о м н н м <u>н</u> о	оо [‡] м++ма ом
2, ZUIZ-ZU	Dis- e tracte	ਜ਼	Ø	വ		თ	9 43	a 4 a	9 4 0 4 8 0	- 4 2 4 9 - 4 3	o 4 0 43	۵ م 4 م 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 4 4 3 3 3 3 4 5 4 3 0 3 3 4 5 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4	0 × × × × × × × × × × × × × × × × × × ×
jury Crashe	Lane Departure	7	Ø	m		11	11 54	11 54 4	11 54 4 5	11 54 7 7	11 54 7 7	11 2 4 4 5 7 8	11 54 7 8 8 47	11 54 7 7 7 7 7 0	11 54 7 7 7 1 1 1 1 1
: Serious In	Intersec- tion	Ť	ო	0		7	7 31	31	4 5 3 <u>1</u>	7 4 5 31	1 4 5 3 3 1	5 1 4 5 31 5 1 7 4 5	3 2 7 4 5 3 3 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 32 1 7 4 5 31 0 32	7 5 5 31 1 7 4 4 0 33 2 1 7 4 4 1 0
Killed &	AII	ო	21	വ		15	15 75	15 75 13	15 13 6	15 75 6 13 14	9 14 6 13 75 15 9 14	15 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	15 75 14 19 9 84 84	15 13 13 13 13 13 15 13 13 13 13 13 13 13 13 13 13 13 13 13	15 15 14 0 14 0 14 13 15 15 15 15 15 15 15 15 15 15 15 15 15
Average Annual	Daily Iravel ª	131,815,719	929,848,012	218,199,600		192,800,429	192,800,429 539,015,019	192,800,429 539,015,019 318,177,555	192,800,429 539,015,019 318,177,555 62,322,909	192,800,429 539,015,019 318,177,555 62,322,909 461,372,602	192,800,429 539,015,019 318,177,555 62,322,909 461,372,602 419,575,899	192,800,429 539,015,019 318,177,555 62,322,909 461,372,602 419,575,899 475,669,229	192,800,429 539,015,019 318,177,555 62,322,909 461,372,602 419,575,899 475,669,229 959,411,933	192,800,429 539,015,019 318,177,555 62,322,909 461,372,602 419,575,899 419,575,899 419,575,899 959,411,933	192,800,429 539,015,019 318,177,555 62,322,909 461,372,602 419,575,899 475,669,229 959,411,933 959,411,933 17,600,047 12,176,382
opulation	.011-2015 Year Estimate)	,225	0,568	0,018		,243	,243 6,754	,243 6,754 8,798	,243 6,754 8,798 ,874	,243 6,754 8,798 ,874 2,616	,243 6,754 8,798 ,874 ,2,616 ,000	,243 6,754 8,798 ,874 2,616 2,616 2,616 5,170	,243 6,754 8,798 ,874 2,616 2,616 2,616 5,170 6,700	,243 6,754 8,798 ,874 ,2,616 2,616 ,000 6,700 6,700	,243 6,754 8,798 ,874 ,2,616 2,616 5,170 6,700 6,700 6,700
Road P	Miles (2 (2016) 5-	107 8	366 3	110 1		146 4	146 4 352 1	146 4 352 1 190 1	146 4 352 1 190 1 87 4	146 4 352 1 190 1 87 4 181 1	146 4 352 1 190 1 190 1 1181 1 144 6	146 4 352 1 190 1 190 1 1181 1 144 6 144 6 125 1 205 1	146 4 352 1 190 1 190 1 144 6 144 6 144 6 144 6 145 3	146 4 352 1 190 1 190 1 144 6 144 6 144 6 145 3 35 3	146 4 352 1 352 1 190 1 190 1 144 6 144 6 144 6 145 3 35 3 35 3 27 1
Municipality	(or Philadel- phia Planning District)	Clayton Borough	Deptford Township	East Green- wich Township		Elk Township	Elk Township Franklin Township	Elk Township Franklin Township Glassboro Borough	Elk Township Franklin Township Glassboro Borough Greenwich Township	Elk Township Franklin Township Glassboro Borough Greenwich Township Harrison Township	Elk Township Franklin Township Glassboro Borough Greenwich Township Harrison Township Logan Logan	Elk Township Franklin Township Glassboro Borough Greenwich Township Harrison Township Logan Township Township	Elk Township Franklin Township Glassboro Borough Greenwich Township Harrison Township Logan Township Mantua Township	Elk Township Franklin Township Glassboro Borough Greenwich Township Township Township Mantua Township Monroe Township Monroe Township	Elk Township Franklin Township Glassboro Borough Greenwich Township Harrison Township Logan Township Logan Township Monroe Township Monroe Township Nonroe Township Nonroe Township Nonroe Township
County		Gloucester	Gloucester	Gloucester		Gloucester	Gloucester Gloucester	Gloucester Gloucester Gloucester	Gloucester Gloucester Gloucester Gloucester	Gloucester Gloucester Gloucester Gloucester	Gloucester Gloucester Gloucester Gloucester Gloucester	Gloucester Gloucester Gloucester Gloucester Gloucester Gloucester	Gloucester Gloucester Gloucester Gloucester Gloucester Gloucester Gloucester	Gloucester Gloucester Gloucester Gloucester Gloucester Gloucester Gloucester Gloucester	Gloucester Gloucester Gloucester Gloucester Gloucester Gloucester Gloucester Gloucester Gloucester

County	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	ury Crashes,	2012-2016	(Non-inter	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^a	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Gloucester	Pitman Borough	77	8,959	110,804,593	7	ю	N	4	ю		L I	0	m
Gloucester	South Harri- son Township	108	3,195	125,509,738	2	0	0	4	H	0	0	0	7
Gloucester	Swedesboro Borough	24	2,627	44,675,659	0	0	0	0	0	0	0	0	0
Gloucester	Washington Township	434	48,216	1,066,245,255	42	11	14	15	o	თ	9	Q	11
Gloucester	Wenonah Borough	29	2,115	21,715,235	⊣	0	4	4	0	0	0	4	0
Gloucester	West Deptford Township	220	21,537	357,266,880	00	0	0	ო	4	ო	0	0	4
Gloucester	Westville Borough	36	4,263	146,583,421	4	с і	0	4	0	0	0	L I	-
Gloucester	Woodbury City	78	10,098	235,020,709	Ч	H	0	Ч	0	0	0	0	0
Gloucester	Woodbury Heights Borough	37	3,028	42,016,142	0	0	0	0	0	0	0	0	0
Gloucester	Woolwich Township	173	10,961	303,206,165	4	-	0	0	£	0	7	0	0
Mercer	East Windsor Township	210	27,389	513,970,321	21	Ø	വ	Q	ო	Ø	10	4	00
Mercer	Ewing Township	327	36,270	651,529,890	15	വ	4	0	с і	7	4	4	ത
Mercer	Hamilton Township	769	88,809	1,895,013,466	52	20	22	22	Q	16	17	വ	17
Mercer	Hightstown Borough	39	5,557	73,589,961	\leftarrow	0	0	H	L	0	0	0	0

A8 😂 🖗 😑 🌒 😩 🔕

County	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	jury Crashes, 2	2012-2016	(Non-inter	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ª	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Mercer	Hopewell Borough	19	1,891	33,482,839	2	7	0	0	0	0	0	0	0
Mercer	Hopewell Township	434	18,311	1,207,190,761	26	9	21	თ	വ	7	7	ო	9
Mercer	Lawrence Township	330	33,252	1,274,500,122	22	o	വ	თ	N	Ø	7	L I	4
Mercer	Pennington Borough	26	2,588	51,155,023	Ч	0	0	0	0	0	0	0	0
Mercer	Princeton	299	28,940	831,912,656	13	ო	Ø	9	0	4	വ	0	0
Mercer	Robbinsville Township	210	13,952	581,171,003	11	ო	9	വ	വ	7	ო	ო	7
Mercer	Trenton City	370	84,459	820,461,832	30	23	00	12	ო	14	2	ო	11
Mercer	West Windsor Township	356	28,108	1,772,471,040	22	7	11	13	7	4	Q	0	വ
Bucks	Bedminster Township	301	6,847	209,313,821	21	7	13	7	9	7	വ	ო	ი
Bucks	Bensalem Township	508	60,425	1,124,006,880	71	24	26	D	23	32	14	12	Q
Bucks	Bridgeton Township	73	1,296	23,941,666	ო	0	4	0	0	0	0	0	0
Bucks	Bristol Borough	66	9,657	114,652,440	12	വ	Q	0	വ	4	-	ო	H
Bucks	Bristol Township	483	54,431	852,459,658	68	6e	27	2	25	16	13	Q	თ
Bucks	Buckingham Township	372	20,268	734,062,046	28	10	18	Q	13	ო	7	0	m

County	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	ury Crashes, 2	2012-2016	(Non-inters	itate)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^a	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Bucks	Chalfont Borough	68 8	4,052	71,884,725	2	7	Ч	0	0	0	-	0	0
Bucks	Doylestown Borough	67	8,353	56,371,876	00	9	ო	4	ъ	4	2	0	0
Bucks	Doylestown Township	265	17,603	631,476,652	32	10	17	7	10	4	თ	4	T.
Bucks	Dublin Borough	17	2,158	37,749,029	0	0	0	0	0	0	0	0	0
Bucks	Durham Township	109	1,147	62,985,111	4	0	0	ᠳ	0	0	0	÷	0
Bucks	East Rockhill Township	124	5,719	160,087,328	13	ო	7	0	ო	сı	2	ო	т Т
Bucks	Falls Township	443	34,172	423,158,474	27	12	12	0	7	ი	7	÷	4
Bucks	Haycock Township	148	1,999	50,122,151	വ	0	വ	0	N	0	0	N	0
Bucks	Hilltown Township	275	15,122	468,035,802	43	14	21	00	13	ო	വ	10	4
Bucks	Hulmeville Borough	12	966	35,915,419	0	0	0	0	0	0	0	0	0
Bucks	lvyland Borough	7	1,016	10,996,287	4	H	L	0	0	0	0	0	0
Bucks	Langhorne Borough	17	1,503	51,974,287	4	0	Ч	0	ъ	0	0	0	0
Bucks	Langhorne Manor Borough	17	1,446	22,016,025	4	0	4	0	0	0	0	0	0
Bucks	Lower Makefield Township	402	32,622	569,221,744	12	4	ത	N	2	L	Q	N	N
Bucks	Lower Southampton Township	194	18,960	420,125,274	24	10	7	0	2	Ŋ	Q	0	2

A10 🗇 🖗 🗐 🇐 🔕 TRANSPORTATION SAFETY ANALYSIS AND PLAN

ounty	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	ury Crashes, 2	2012-2016	(Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^a	All	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Bucks	Middletown Township	464	45,438	950,656,605	37	13	20	വ	7	9	œ	7	0
Bucks	Milford Township	262	9,928	457,385,453	21	Q	16	0	11	0	7	വ	7
Bucks	Morrisville Borough	72	8,689	72,681,879	4	4	N	0	N	0	0	0	L I
Bucks	New Britain Borough	28	3,028	73,370,691	0	0	0	0	0	0	0	0	0
Bucks	New Britain Township	190	11,095	259,519,549	20	ω	12	Ч	9	0	2	4	N
Bucks	New Hope Borough	32	2,526	54,567,126	m	L	ო	0	ъ	7	0	L	0
Bucks	Newtown Borough	22	2,240	30,934,783	0	0	0	0	0	0	0	0	0
Bucks	Newtown Township	210	19,459	478,495,075	00	4	9	0	0		7	4	0
Bucks	Nockamixon Township	230	3,425	177,723,135	00	0	N	Ч	ъ	0	ო	0	0
Bucks	Northampton Township	474	39,675	941,900,346	28	7	18	4	თ		4	თ	7
Bucks	Penndel Borough	16	2,700	45,647,661	0	0	0	0	0	0	0	0	0
Bucks	Perkasie Borough	78	8,511	89,506,169	4	7		0	0	L	7	L	0
Bucks	Plumstead Township	294	12,730	472,359,205	38	15	25	Ч	11	ო	00	വ	ო
Bucks	Quakertown Borough	69	8,939	169,110,568	10	ო	7	0	ო	4	7	L	L I
Bucks	Richland Township	208	13,081	537,333,128	24	11	7	N	N	0	11	4	ო

Country	Municipality,	peod	Donuation		Killod	8. Corione In	Urve hae	0010-0100	Non-interes	(oteta)			
	or Philadel- phia Planning District)	Miles (2016)	5-Year Estimate)	Daily Travel ^a	All	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Bucks	Richlandtown Borough	ø	1,246	5,603,954	Ч	0	0	0	τ	-	0	0	0
Bucks	Riegelsville Borough	19	842	14,733,311	Ч.	H	с і	0	Ч	0	0	0	0
Bucks	Sellersville Borough	32	4,232	38,179,293	-	Ч	0	0	0	0	0	0	0
Bucks	Silverdale Borough	11	963	21,244,993	4	L I	7	Ч	0	0	0	0	2
Bucks	Solebury Township	307	8,674	367,916,023	19	ю	10	0	വ	0	9	7	L
Bucks	Springfield Township	285	5,040	243,805,053	11	0	Ø	0	ო	0	4	0	0
Bucks	Telford Borough	20	2,243	20,663,114	ო	ო	0	0	τ	0	0	0	0
Bucks	Tinicum Township	323	3,993	157,470,943	17	ო	13	0	ω		7	0	N
Bucks	Trumbauers- ville Borough	10	1,081	20,983,998	0	0	0	0	0	0	0	0	0
Bucks	Tullytown Borough	28	1,781	42,321,832	ო	0	с і	0	0	त	-	0	0
Bucks	Upper Makefield Township	229	8,222	295,055,168	11	ო	7	0	ო	0	-	4	-
Bucks	Upper Southampton Township	147	15,171	351,057,562	25	10	00	С	വ	4	Q	4	ო
Bucks	Warminster Township	253	32,716	659,341,248	42	28	12	വ	13	თ	11	7	9
Bucks	Warrington Township	221	23,541	717,155,239	30 30	19	17	-	11	ო	14	Q	2
Bucks	Warwick Township	144	14,579	373,603,784	00	0	വ		ო	0	0	ო	0

A12 😳 🚯 🗐 🗐 🔇 TRANSPORTATION SAFETY ANALYSIS AND PLAN

County	Municipality	Road	Population	Average Annual	Killed	& Serious In	jury Crashes, 2	2012-2016	(Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^a	All	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Bucks	West Rockhill Township	171	5,275	496,690,982	13	4	7	0	ო	0	വ	L I	7
Bucks	Wrightstown Township	97	3,056	284,523,102	თ	4	o	0	0	0	4	4	0
Bucks	Yardley Borough	24	2,324	45,676,461	4	0	7	m	0	0	4	4	Ч
Chester	Atglen Borough	18	1,507	26,355,917	2	0	0	0	N	0	0	Ч	0
Chester	Avondale Borough	13	1,587	31,599,786	4	0	0	ਜ	0	0	0	4	0
Chester	Birmingham Township	77	4,242	158,934,637	00	4	വ		L	H	2	L I	0
Chester	Caln Township	154	14,025	270,408,616	14	ო	7	0	ო	7	0	0	0
Chester	Charlestown Township	135	5,659	303,490,622	2	τ	വ	0	L	0	с і	CN	0
Chester	Coatesville City	87	13,130	135,621,666	16	თ	4	ਜ		ო	-	0	7
Chester	Downingtown Borough	20	7,921	145,082,864	4	ო	7	0	0	7	0	0	0
Chester	East Bradford Township	186	9,996	261,101,943	19	7	17	0	വ	Ţ	L	4	ო
Chester	East Brandy- wine Township	115	7,328	176,744,890	00	ო	ო	0	ო	7	4	0	H
Chester	East Caln Township	42	4,860	118,311,233	4	5	7	0	7	0	L	7	Ч
Chester	East Coventry Township	126	6,734	154,346,135	თ	4	00	त	0	0	2	0	0

A13

			:										
County	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	ury Crashes, 2	2012-2016	(Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daıly Iravel ^a	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Chester	East Fallow- field Township	137	7,522	142,644,319	7	0	4	0	7	0	0	τ	-
Chester	East Goshen Township	199	18,139	350,609,728	12	4	4	0	ო	0	വ	L I	m
Chester	East Marl- borough Township	149	7,152	278,737,049	13	0	7		4	m	0	5	ო
Chester	East Nantmeal Township	111	1,779	98,232,755	2	L I	Q	0		0	m	m	L
Chester	East Notting- ham Township	177	8,777	84,597,790	00	4	7	H	വ	0	0	0	7
Chester	East Pikeland Township	129	7,230	253,430,413	10	ო	വ	0	Q	с і	2	0	0
Chester	East Vincent Township	155	6,849	177,713,215	12	4	00	0	ю	0	ო	5	7
Chester	East Whiteland Township	185	10,681	605,083,500	თ	7	4		m	7	2	0	0
Chester	Easttown Township	135	10,562	239,142,302	4	с і	L	H	0	0	с	L	7
Chester	Elk Township	67	1,682	29,874,590	2	0	N	0	с і	0	0	0	0
Chester	Elverson Borough	20	1,332	15,742,532	2	0	7	0	5	0	0	L	-
Chester	Franklin Township	124	4,415	84,233,715	വ	с і	ო	0	7	0	0	m	0
Chester	Highland Township	105	1,272	109,196,849	12	7	Ø	0	ი	0	m	0	m
Chester	Honey Brook Borough	14	1,681	21,494,835	2	0	L I	0	0	0	-	0	0
Chester	Honey Brook Township	169	7,858	198,503,368	21	Ø	16	0	თ	Ч	4	4	0

A14 😂 🚯 🗐 🗐 🔇 TRANSPORTATION SAFETY ANALYSIS AND PLAN

٦ty	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	iury Crashes, 2	2012-2016	(Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Iravel "	All	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
L	Kennett Square Borough	41	6,123	40,316,320	0		0	0	Ч	4	0	5	0
j.	Kennett Township	177	7,754	331,018,609	7	7	ო	Ч	4	0	7	7	ი
L D	London Brit- ain Township	92	3,199	51,091,647	ო	0	N	0	L	0	0	7	0
er	London Grove Township	162	7,945	192,212,387	16	4	Ø	0	വ	Ч.	0	5	0
er	Londonderry Township	20	2,339	134,164,012	Q	4	N	Ч	N	0	7	с і	0
er	Lower Oxford Township	120	5,095	92,325,967	13	വ	Ø	L	വ	5	4	7	0
er	Malvern Borough	34	3,179	61,661,621	0	0	0	0	0	0	0	0	0
ter	Modena Borough	9	496	1,226,751	2	Ļ	L	0	7	0	L	0	Ч.
er	New Garden Township	169	12,079	259,862,376	24	თ	11	0	12	Ч	വ	7	വ
er	New London Township	112	5,776	93,424,384	7	ო	4	0	ო	1	4	с і	0
er	Newlin Township	74	1,317	84,716,056	2	0	0	2	0	0	0	0	0
er	North Coven- try Township	137	7,935	237,520,324	თ	4	9	Ч	4	1	7	0	0
er	Oxford Borough	49	5,100	41,354,709	4	7	4	0	0	Ч	0	с і	0
er	Parkesburg Borough	36	3,636	24,721,303	4	0	ო	0	7	1	0	с і	Ч.
er	Penn Township	80	5,441	79,276,924	თ	0	വ	0	0	₽ ₽	0	⊢	сц.

County	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	ury Crashes,	2012-2016	3 (Non-inters	state)			
	or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Iravel d	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Chester	Pennsbury Township	96	3,621	237,657,493	თ	ო	9	0	7	0	2		0
Chester	Phoenixville Borough	127	16,530	203,035,658	10	ო	9	0	4	വ	0	0	0
Chester	Pocopson Township	82	4,713	129,518,926	2	0	0	0	0	0	0	L	0
Chester	Sadsbury Township	73	3,674	134,508,804	15	വ	თ	0	Ø	N	4	N	4
Chester	Schuylkill Township	137	8,545	287,122,701	4	÷	ო	Ч	H	÷		0	0
Chester	South Coatesville Borough	20	1,581	22,633,707	4	4	0	2	4	0	m		L
Chester	South Coven- try Township	68	2,612	158,204,150	4		7	0	0	0	L	0	0
Chester	Spring City Borough	23	3,337	23,256,995	4	0	0	0	0	L I	0	0	0
Chester	Thornbury Township	59	3,310	129,569,539	თ	ო	വ	Ч	വ	÷	4	ю	
Chester	Tredyffrin Township	388	29,455	893,573,928	12	4	Q	0	ო	ო	7	0	-
Chester	Upper Oxford Township	104	2,493	125,983,282	00	4	9	0	L	0	7	0	0
Chester	Upper Uwch- Ian Township	143	11,419	239,382,106	2	τ	ъ	0	L I	0	0	0	0
Chester	Uwchlan Township	212	18,325	522,523,723	Q	4	N	4		N	L	0	0
Chester	Valley Township	86	7,163	83,227,642	10	-	7	0	വ	4	0	0	4
Chester	Wallace Township	83	3,581	71,398,693	Q	0	0	0	H	Ţ	0	с	0

A16 😂 🖗 🗐 🧐 🔇 TRANSPORTATION SAFETY ANALYSIS AND PLAN

County	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	jury Crashes, 2	2012-2016	3 (Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^a	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Chester	Warwick Township	129	2,516	116,333,150	4	τ	ო	0	0	0	-	0	0
Chester	West Bradford Township	206	12,426	348,478,016	20	ო	12	0	Q	0	L I	4	с і
Chester	West Brandy- wine Township	128	7,420	213,156,915	11	0	Q	0	ო	0	ო	0	4
Chester	West Caln Township	195	9,055	151,846,305	18	7	15	0	11	ო	-	4	0
Chester	West Chester Borough	96	18,860	132,511,935	15	7	0	0	4	11	9	0	ო
Chester	West Fallow- field Township	131	2,576	203,062,150	თ	7	വ	0	ო	-	4	0	0
Chester	West Goshen Township	261	22,598	588,821,406	19	വ	11	0	œ	9	4	0	9
Chester	West Grove Borough	19	2,856	16,564,856	2	Ч	0	0	L	L I	L I	0	0
Chester	West Marlborough Township	103	798	103,445,115	11	7	10	4	വ	0	4	4	2
Chester	West Nantmeal Township	104	1,939	97,244,450	4	त	m	0	L	0	0	0	L
Chester	West Notting- ham Township	82	2,720	51,218,308	2	4	0	0	4	4	\leftarrow	0	0
Chester	West Pikeland Township	95	4,047	156,412,812	വ	с і	ი	0	0	0	4	7	с і
Chester	West Sads- bury Township	94	2,238	202,562,781	17	7	7	0	ო	N	00	0	4
Chester	West Vincent Township	160	4,787	192,136,138	7	5	4	H	7	-	-	7	с і
Chester	West Whiteland Township	223	18,397	613,248,285	16	00	Q	4	Q	7	വ	4	വ

County	Municipality	Road	Population	Average Annual	Killed	& Serious In	jury Crashes, 2	2012-201	S (Non-inter	'state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Iravel ª	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Agg sive
Chester	Westtown Township	141	10,874	294,426,408	13	Q	ε	с і	വ	Ч	വ	H	വ
Chester	Willistown Township	200	10,622	427,988,792	00	ო	Q	4	ო	Ч	ო	H	0
Delaware	Aldan Borough	29	4,164	60,566,429	0	-	2	0	0	0	0	ħ	0
Delaware	Aston Township	138	16,787	220,765,456	13	9	വ	0	വ	0	4	с і	ᠳ
Delaware	Bethel Township	92	8,986	215,824,721	11	Q	വ	4	4	0	7	Q	2
Delaware	Brookhaven Borough	55	8,045	101,035,649	12	N	7	4	ო	τ	2	ო	2
Delaware	Chadds Ford Township	93	3,705	461,208,281	24	12	o	ო	ო	ო	7	0	м
Delaware	Chester City	213	34,007	383,070,849	52	28	23	0	18	16	Q	വ	2
Delaware	Chester Heights Borough	32	2,568	121,827,511	4	0	m	0	4	0	H	0	
Delaware	Chester Township	27	4,069	33,347,378	വ	ო	വ	0	L	0	H	0	
Delaware	Clifton Heights Bor- ough	28	6,656	101,762,098	4	4	Ħ	0	4	ო	H	0	0
Delaware	Collingdale Borough	32	8,778	64,430,501	13	ω	Q	с і	4	0	0	0	0
Delaware	Colwyn Borough	12	2,542	8,900,488	0	0	0	0	0	0	0	0	0
Delaware	Concord Township	185	17,372	615,912,536	35	16	14	$\overline{}$	13	D	9	4	ω

County	Municipality	Road	Population	Average Annual	Killed,	& Serious Inj	jury Crashes, 2	2012-2016	(Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^a	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Delaware	Darby Borough	34	10,689	97,242,841	Ø	0	0	0	0	4	с і	Ч	H
Delaware	Darby Township	35	9,293	88,146,827	10	വ	വ	0	N	0	ო	0	0
Delaware	East Lansdowne Borough	12	2,670	31,296,000	-	0	0	0	0	-	0	0	0
Delaware	Eddystone Borough	16	2,572	21,011,621	2	L I	0	0	0	0	0	4	0
Delaware	Edgmont Township	97	4,011	247,884,174	m	0	0	0	N	H	0	L I	H
Delaware	Folcroft Borough	28	6,615	61,735,348	വ	ო	ო	0	0	0	0		0
Delaware	Glenolden Borough	34	7,150	125,003,314	23	15	4	0	9	7	വ	0	H
Delaware	Haverford Township	313	48,698	926,624,834	14	വ	ю	7	4	4	ო	0	7
Delaware	Lansdowne Borough	56	10,618	133,050,181	თ	4	7	H	4	വ	4	0	H
Delaware	Lower Chichester Township	24	3,466	30,706,623	0	2	N	0	L	0	L	0	0
Delaware	Marcus Hook Borough	20	2,430	20,999,380	4	0	ო	H	N	0	-	0	0
Delaware	Marple Township	220	23,551	583,071,470	15	Q	4	0		4	വ	0	0
Delaware	Media Borough	38	5,341	98,948,458	2	H	0	0	0	₽	2	0	0
Delaware	Middletown Township	183	15,855	580,043,393	20	11	10	0	9	വ	Ω	ო	0
Delaware	Millbourne Borough	ო	1,291	37,078,406	2	Ч	τ	0	τ	τ	0	L I	0

A19

County	Municipality	Road	Population	Average Annual	Killed	& Serious In	jury Crashes,	2012-2016	(Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^a	All	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Delaware	Morton Borough	14	2,670	20,551,506	ო	N	с і	Ч	с і	÷	0	0	
Delaware	Nether Providence Township	136	13,757	274,360,963	00	ო	ى ا	0	4	0	വ	0	4
Delaware	Newtown Township	165	12,294	470,382,882	11	വ	7	ო	ი	0	-	4	0
Delaware	Norwood Borough	29	5,897	56,653,020	m	Ч	0	0	с і	0	0	0	0
Delaware	Parkside Borough	თ	2,192	9,441,450	0	0	0	0	0	0	0	0	0
Delaware	Prospect Park Borough	30	6,464	62,643,125	4	0	H	Ч	с і	L I	0	0	0
Delaware	Radnor Township	297	31,474	644,856,395	22	4	14	0	00	9	ო	7	4
Delaware	Ridley Park Borough	68	7,021	63,423,204	ო	4	0	L	0	0	0	0	0
Delaware	Ridley Township	184	30,921	437,919,326	29	16	9	4	വ	12	9	ო	7
Delaware	Rose Valley Borough	12	885	9,673,529	0	0	0	0	0	0	0	0	0
Delaware	Rutledge Borough	വ	753	1,374,472	4	L I	0	0	0	0	4	0	0
Delaware	Sharon Hill Borough	29	5,685	74,480,810	m	Ч	ო	0	с і	L I	0	0	0
Delaware	Springfield Township	190	24,276	696,941,948	14	9	വ	0	വ	ო	4	ო	L
Delaware	Swarthmore Borough	42	6,198	83,035,796	0	0	0	0	0	0	0	0	0
Delaware	Thornbury Township	113	7,833	171,150,704	10	4	თ	0	Ļ	0	7	ო	L

A20 🗇 🖗 🗐 🌑 🚯 TRANSPORTATION SAFETY ANALYSIS AND PLAN

unicipality Road Population Average Annual Killed & Serious Injury Crashee	Road Population Average Annual Killed & Serious Injury Crashee Miles (2011-2015 Deily Travel®	Population Average Annual Killed & Serious Injury Crashe	Average Annual Killed & Serious Injury Crashe:	Killed & Serious Injury Crashe	& Serious Injury Crashe	ury Crashe		2012-2016	(Non-inter	state)			
r Frindader- Milles (2011-2013) Ually Itavel All Intersec- Lan Na Planning (2016) 5-Year Estimate) Dep strict)	Wiles (2011-2015 Daily Iravel All Intersec- Lan (2016) 5-Year Estimate) Dep tion Dep	(ZULI-ZUL) Dally Iravel All Intersec- Lan 5-Year Estimate) Dep tion Dep	ually Iravel & All Intersec- Lan tion Dep	All Intersec- Lan tion Dep	Intersec- Lan tion Dep	Lan Dep	e ìarture	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
nicum 57 4,103 156,037,168 8 3 4 wnship	57 4,103 156,037,168 8 3 4	4,103 156,037,168 8 3 4	156,037,168 8 3 4	8 3	3	4		4		ਜ	с і	0	с і
ainer 18 1,752 19,794,440 0 0 brough	18 1,752 19,794,440 0 0 0	1,752 19,794,440 0 0 0	19,794,440 0 0 0	0 0	0	0		0	0	0	0	0	0
bland 19 3,248 23,185,491 4 1 2 brough	19 3,248 23,185,491 4 1 2	3,248 23,185,491 4 1 2	23,185,491 4 1 2	4 1 2	1	2		0	0	0	0	0	0
pper 134 16,867 330,613,950 24 7 1 nichester wnship	134 16,867 330,613,950 24 7 1	16,867 330,613,950 24 7 1	330,613,950 24 7 1	24 7 1	7 1	-	Q	വ	00	Q	Ø	7	വ
pper Darby 307 82,804 786,867,191 64 33 2 wnship	307 82,804 786,867,191 64 33 2	82,804 786,867,191 64 33 2	786,867,191 64 33 2	64 33 2	33	2	٥.	0	14	23	12	2	00
pper 115 10,246 241,988,822 6 0 . ovidence wnship	115 10,246 241,988,822 6 0	10,246 241,988,822 6 0	241,988,822 6 0	0	0	•	4	0	4	L	2	L	
adon 50 11,506 157,288,611 14 8 brough	50 11,506 157,288,611 14 8	11,506 157,288,611 14 8	157,288,611 14 8	. 14	∞		2	0	2	0	4	L I	2
ington 443 55,559 1,171,558,457 33 22 wnship	443 55,559 1,171,558,457 33 22	55,559 1,171,558,457 33 22	1,171,558,457 33 22	33 22	22		00	0	വ	10	7	2	4
nbler 33 6,481 33,070,183 1 1 brough	33 6,481 33,070,183 1 1	6,481 33,070,183 1 1	33,070,183 1 1	Ч Ч	Ч.	-	0	0	0	0	0	0	0
idgeport 33 4,573 107,928,935 4 2 brough	33 4,573 107,928,935 4 2	4,573 107,928,935 4 2	107,928,935 4 2	4	0		7	0	L	ო	L I	L I	0
yn Athyn 16 1,348 21,615,286 1 0 orough	16 1,348 21,615,286 1 0	1,348 21,615,286 1 0	21,615,286 1 0	1 0	0		0	0	0	L	0	0	0
neltenham 285 36,912 1,181,951,619 48 22 . wnship	285 36,912 1,181,951,619 48 22 :	36,912 1,181,951,619 48 22	1,181,951,619 48 22	48 22	22	•••	12	4	o	21	വ	Q	2
311egeville 38 5,263 55,666,449 4 1 55,666,449 4 1 510ugh	38 5,263 55,666,449 4 1	5,263 55,666,449 4 1	55,666,449 4 1	4		-	0	0	-	-	4	0	0
onsho- 49 7,864 96,518,318 4 1 ocken prough	49 7,864 96,518,318 4 1	7,864 96,518,318 4 1	96,518,318 4 1	4			N	Ч	0	0	Ч	0	0

Count		Mont _{ ery	Mont ery	Mont{ ery	Mont _{ ery	Mont _{ ery	Mont ₍ ery	Mont{ ery	Mont ₍ ery	Mont _{ ery	Mont _{ ery	Mont _{ ery	Mont{ ery	Mont _{ ery	Mont _§ ery	Mont _{ ery
ţλ		gom-	gom-	gom-	gom-	gom-	gom-	gom-	gom-	gom-	gom-	gom-	gom-	gom-	gom-	gom-
Municipality	(or Philadel- phia Planning District)	Douglass Township	East Green- ville Borough	East Norriton Township	Franconia Township	Green Lane Borough	Hatboro Borough	Hatfield Borough	Hatfield Township	Horsham Township	Jenkintown Borough	Lansdale Borough	Limerick Township	Lower Freder- ick Township	Lower Gwynedd Township	Lower Merion Township
Road	Miles (2016)	165	19	144	179	თ	52	20	159	282	22	131	267	80	153	534
Population	(2011-2015 5-Year Estimate)	10,313	2,957	13,941	13,193	431	7,403	3,299	17,460	26,353	4,441	16,382	18,474	4,880	11,500	58,114
Average Annual	Daily Travel ª	390,746,845	15,783,849	401,787,151	347,952,050	19,135,535	207,644,363	42,841,698	727,827,984	939,854,870	58,131,510	227,588,814	529,379,508	125,400,303	527,742,955	1,316,990,980
Killed	AII	18	H	13	21	4	12	2	22	57	Q	വ	32	Q	10	67
& Serious Ir	Intersec- tion	00	0	9	7	0	7	0	10	21	ო	ю	16	ᠳ	4	32
njury Crashes,	Lane Departure	7	0	5	16	0	ო	7	00	21	H	с і	17	9	N	28
2012-201	Dis- tracted	ო	0	-	2	0	2	0	ო	7	-	0	4	0	4	2
6 (Non-inte	Impaired	7	0	ო	വ	L	7	τ	7	20	L I	L	11	0	4	11
rstate)	Pedes- trian & Bicycle	7	4	ო	0	Ч	4	0	ო	13	4	7	4	0	4	15
	Older Driver	വ	0	Q	9	Ч	m	Ч	വ	თ	-	L	0	0	ო	20
	Younger Driver	7	0	0	4	0	0	0	ო	Q	H	0	Q	0	-	7
	Agg sive	2	0	м	0	0	2	0	4	വ		0	2	0	0	4

County	Municipality	Road	Population	Average Annual	Killed	& Serious Inj	iury Crashes, 2	2012-2016	(Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^a	All	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Montgom- ery	Lower Moreland Township	162	13,133	476,900,894	21	13	7	ო	Q	с і	വ	m	m
Montgom- ery	Lower Pottsgrove Township	129	12,145	203,450,367	19	2	თ	0	ო	Q	വ	-	-
Montgom- ery	Lower Providence Township	247	25,603	490,656,106	25	11	13	С	00	4	4	00	4
Montgom- ery	Lower Salford Township	204	15,201	376,628,873	10	വ	7	ч	N	N	7	7	-
Montgom- ery	Marlborough Township	63	3,256	112,981,269	m	0	0	0	0	0	\leftarrow	0	0
Montgom- ery	Montgomery Township	239	25,397	967,416,489	27	20	11	0	9	ო	10	9	4
Montgom- ery	Narberth Borough	26	4,295	74,732,213	ო	0	0	0	0	0	-	Ч.	0
Montgom- ery	New Hanover Township	196	11,684	320,047,983	21	Q	16	9	7	7	9	7	с
Montgom- ery	Norristown Borough	143	34,454	367,307,946	32	19	4	Ч	7	14	4	7	0
Montgom- ery	North Wales Borough	30	3,227	39,635,810	4	0	0	0	0	L	0	0	0
Montgom- ery	Pennsburg Borough	26	3,870	29,351,059	2	7	0	0	0	7		0	0
Montgom- ery	Perkiomen Township	84	9,196	145,867,162	12	4	Ø	ч	0		7	ო	-
Montgom- ery	Plymouth Township	148	16,637	543,579,871	28	11	14	ო	9	L	თ	4	7
Montgom- ery	Pottstown Borough	175	22,519	264,619,117	27	15	10	-	00	9	വ	0	-
Montgom- ery	Red Hill Borough	21	2,499	14,186,164	2	0	0	0	с і	0	0	0	⊢

County Municipality	(or Philadel- phia Plannin District)	Montgom- Rockledge ery Borough	Montgom- Royersford ery Borough	Montgom- Salford ery Township	Montgom- Schwenksvil ery Borough	Montgom- Skippack ery Township	Montgom- Souderton ery Borough	Montgom- Springfield ery Township	Montgom- Telford ery Borough	Montgom- Towamencin ery Township	Montgom- Trappe ery Borough	Montgom- Upper Dublir ery Township	Montgom- Upper Frede ery ick Township	Montgom- Upper ery Gwynedd Township	Montgom- Upper ery Hanover Township
Road	Miles 1g (2016)	16	31	68	le 13	160	56	161	17	171	37	n 299	r- 75	136	182
Population	(2011-2015 5-Year Estimate)	2,553	4,774	2,673	1,415	14,433	6,668	19,510	2,667	17,943	3,533	26,042	3,550	15,784	6,750
Average Annual	Daily Travel ^a	44,182,362	42,554,195	67,018,726	39,479,427	349,705,768	67,896,890	366,340,206	9,817,163	426,211,565	82,599,939	764,823,386	117,690,846	287,623,451	254,196,572
Killed 8	AII	Ч	-	7	0	9	12	17	ω	15	-	23	4	თ	თ
k Serious In	Intersec- tion	0	0	0	0	Ч	4	ω	N	ω	H	11	с і	4	4
jury Crashes, 2	Lane Departure	4	0	Q	Ч	വ	വ	ω	Ħ	Ø	0	10	ო	m	4
2012-201	Dis- tracted	0	0	0	0	0	0	0	0	Ч	0	0	0	0	H
6 (Non-inte	Impaired	Ч	H	m	Ħ	4	CN	Q	Ħ	ო	0	7	Ħ	4	ო
rstate)	Pedes- trian & Bicycle	0	H	0	Ħ	0	ო	с	0	Ч	0	ო	H		H
	Older Driver	0	0	0	0	ъ	т	4	ъ	4	-	9	0	0	ო
	Younger Driver	0	0	0	0	τ	4	N	H	ო	L I		0	7	ო
	Aggreesive	0	0	0	0	0	ო	Q	0	4	0	ო	÷	-	0

County	Municipality	Road	Population	Average Annual	Killed	& Serious Ini	iurv Crashes.	2012-2016	(Non-inters	state)			
	(or Philadel- phia Planning District)	Miles (2016)	(2011-2015 5-Year Estimate)	Daily Travel ^a	AII	Intersec- tion	Lane Departure	Dis- tracted	Impaired	Pedes- trian & Bicycle	Older Driver	Younger Driver	Aggres- sive
Montgom- ery	Upper Moreland Township	177	24,167	620,005,528	37	18	10	4	11	ω	ო	4	4
Montgom- ery	Upper Pottsgrove Township	20	5,382	195,307,697	19	თ	12	0	00	L	L	m	0
Montgom- ery	Upper Providence Township	262	21,802	382,596,099	20	თ	12	4	00	ო	m	4	
Montgom- ery	Upper Salford Township	833	3,347	149,828,771	11	വ	വ	0	4	0	2	0	0
Montgom- ery	West Con- shohocken Borough	20	1,322	69,747,554	0	-	0	0		СИ	0	0	0
Montgom- ery	West Norriton Township	135	15,751	342,640,174	21	o	9	Ļ	വ	9	m	4	7
Montgom- ery	West Pottsgrove Township	40	3,886	47,813,473	വ	7	ო	0	0	с і	L	0	0
Montgom- ery	Whitemarsh Township	203	17,496	671,674,366	26	Q	13	0	7	0	Q	0	4
Montgom- ery	Whitpain Township	238	19,064	654,003,272	16	თ	4	Ч	4	0	ດ	L I	0
Montgom- ery	Worcester Township	176	10,034	570,608,453	13	ო	00	ო	9	5	m	5	0
Philadel- phia	Central	252	118,227	1,794,588,882	120	75	18	Q	23	72	4	0	m
Philadel- phia	Central Northeast	254	84,010	1,092,596,090	72	43	15	0	10	31	16	4	7
Philadel- phia	Lower Far Northeast	245	71,267	1,125,805,064	67	25	26	0	10	13	10	14	4

nty Municipality Roa	(or Philade!- Mil phia Planning (20 District)	uiladel- Lower North 22 lia	niladel- Lower 22. lia Northeast	niladel- Lower 22 nia Northwest	hiladel- Lower South 89 hia	hiladel- Lower 159 nia Southwest	hiladel- North 30 [.] hia	hiladel- North 25 hia Delaware	hiladel- River Wards 20: hia	hiladel- South 22: hia	hiladel- University 17' hia Southwest	hiladel- Upper Far 27 [,] hia Northeast	hiladel- Upper North 35	hiladel- Upper 32 hia Northwest	hiladel- West 22 hia	hiladel- West Park 150 hia	hiladel- Philadelphia 4,1 hia Citv
ad Population	les (2011-2015 016) 5-Year Estimate)	26 91,472	23 99,708	24 53,034	5,165	9 40,857	07 142,835	92,824	03 67,413	22 136,894	2 80,876	1 65,909	50 156,757	20 85,868	26 109,451	6 44,353	129 1,546,920
Average Annual	Daily Travel ^ª .	996,463,413	1,200,222,025	1,117,697,892	510,115,943	696,455,728	1,549,688,688	1,160,752,630	753,177,025	894,957,387	948,218,908	1,039,938,509	1,700,057,777	1,196,706,697	806,753,326	1,322,335,630	19,542,931,916
Killed & Serious	All Intersec tion	124 75	110 59	46 13	17 7	64 27	242 127	98 48	84 47	73 30	97 52	57 18	140 82	56 33	110 64	72 34	1,468 765
Injury Crashes, 2	- Lane Departure	19	26	17	ω	22	68	25	23	16	17	20	38	16	23	23	364
2012-2016 (Non-i	Dis- Impair tracted	1 21	3 17	г	4	0	5 49	4 21	2 19	3 10	3 7	Ъ О	7 28	4	3 13	0 11	42 246
iterstate)	ed Pedes- trian & Bicycle	59	44	13	ო	21	101	41	33	39	49	13	55	21	45	20	598
	Older Driver	ω	12	თ	N	4	10	12	ო	ω	10	10	12	J	11	11	146
	Younger Driver	10	თ	ო	N	9	16	o	4	ო	10	11	12	N	ω	10	120
	Aggres- sive	വ	00	0	0	0	16	2	7	L I	9	4	12	വ	9	4	91

^a Average Annual Daily Traffic is based on data from TIM 2 traffic simulation model developed by DVRPC. The traffic model produces estimates of 24-hour, weekday traffic volume for every road segment in the region. This value can be converted to vehicle miles traveled using the road segment length and an annual average daily traffic conversion factor based on the road functional class of each segment. The vehicle miles traveled estimates were aggregated to the municipality (or planning districts for Philadelphia) by joining the road segment polylines in ArcGIS to the corresponding municipality polygons. Similar to the crash data, only non-interstate road segments were joined and a 100-foot buffer was employed to ensure that the traffic volume assigned to a road segment bordering a municipality was assigned to that municipality even if the polyline associated with the road segment fell just outside the polygon associated with the corresponding municipality.

Agency						
AAA Mid-Atlantic						
AECOM						
Atlas Flasher						
AutoBase						
Bicycle Access Council						
Bicycle Coalition of Greater Philadelphia						
Bucks County Planning Commission						
Burlington County						
Burlington County Sheriff's Department						
Camden County						
Camden County Department of Health and Human Services						
Camden County Highway Traffic Safety Task Force						
Camden County Office of Emergency Management						
Cherry Hill Township Police Department						
Chester County Highway Safety						
Chester County Planning Commission						
City of Philadelphia						
City of Philadelphia Office of Innovation and Technology						
City of Philadelphia Streets Department						
Cross County Connection Transportation Management Association						
DAG Complete Streets Sub-Committee						
Delaware County Planning Department						
Delaware County Transportation Management Association						
Delaware River Port Authority/Port Authority Transit Corporation						
Delaware Valley Goods Movement Task Force						
Delaware Valley Regional Planning Commission						
Department of Behavioral Health and Intellectual disAbility Services						
Division of Highway Traffic Safety						
Families for Safe Streets						
Gloucester County Prosecutor's Office						
Gloucester Township Police Department						
Greater Mercer Transportation Management Association						
Greenman-Pedersen, Inc.						

62 😂 🖗 😑 😫 🚯

Agency **MBO Engineering** Mercer County Michael Baker, International Montgomery County Montgomery County Planning Commission National Highway Traffic Safety Administration National Safety Council New Jersey Department of Transportation New Jersey Divison of Highway Traffic Safety **New Jersey State Police** NJM Insurance Group Partnership Transportation Management Association of Montgomery County Pennsylvania Department of Transportation Pennsylvania DUI Association Philadelphia City Planning Commission Philadelphia Department of Public Health Philadelphia Office of Transportation, Infrastructure, and Sustainability Philadelphia Police Department **Princeton Municipality** Public Health Management Corporation Rutgers Center for Advanced Infrastructure and Transportation SAFE Highway Engineering, LLC Safety Engineering Consultant South Jersey Transportation Planning Organization South of South Neighborhood Association Temple University Transportation Management Association of Chester County Township of Burlington Police Transportation Management Association of Chester County Urban Engineers, Inc. Westtown-Goshen Rotary

WSP

		Intersection Safety	Lane Departure	Older Drivers	Young Drivers	Pedestrian & Bicyclist Safety	Impaired Driving	Distracted Driving	Aggressive Driving
	Intersection Safety	1	4680	8002	6283	6031	1966	9056	6946
Collision Type	Work Zone	341	389	279	227	06	117	361	527
	Lane Departure	4680	1	2157	3013	437	2909	4622	3644
	Older Drivers	8002	2157		1443	1137	442	4306	3166
	Young Drivers	6283	3013	1443		458	495	4056	3004
	Truck-Related	1243	689	609	311	171	121	1005	880
Road User	Motorcycle	1362	1285	356	313	71	198	434	518
	Train/Trolley	56	7	11	4	00	വ	12	വ
	Pedestrian	4324	349	838	346		446	832	269
	Bicycle	1707	88	281	106	ı	91	335	114
	Impaired Driving	1966	2909	442	495	553	1	1379	884
	Unbelted	3701	2648	1122	1284	771	1118	1502	953
Behavior	Distracted Driving	9056	4622	4306	4056	1167	1379	1	3060
	Aggressive Driving	6946	3644	3166	3004	392	884	3060	1

TRANSPORTATION SAFETY ANALYSIS AND PLAN

◙ ⊜ 🖗 ⊜ 🖗 🔕

Table D.1: Query Formats for Pennsylvania Crash Data

AASHTO #	Emphasis Area	Criteria	Pennsylvania Database Query	Notes
		Drivers Aged 16–17	(FLAG.DRIVER_16YR=1 OR FLAG. DRIVER_17YR=1)	
1	Instituting Graduated Licensing for Young Drivers	Drivers Aged 16–20	Person. Age between 16 and 20 and Person.PersonType = "driver" and Vehicle. VEH_TYPE <> 20 or 21	Query out all drivers who are aged between 16 and 20; exclude drivers who are driving a bicycle or pedalcycle.
2	Ensuring Drivers Are Fully Licensed and Competent	Unlicensed Driver	FLAG.UNLICENSED=1	
3	Sustaining Proficiency in Older Drivers	Drivers Aged >65	(FLAG.DRIVER_65_74YR=1 OR FLAG.DRIVER_75_PLUS=1)	
4	Curbing Aggressive Driving	See notes follow- ing this table	FLAG.NHTSA_AGGRESSIVE DRIVING=1	
5	Reducing Impaired Driving	Impairment Due to Alcohol	FLAG.ALCOHOL_RELATED=1	
5	Reducing impaired bring	Drinking Driver Only	FLAG.DRINKING_DRIVER=1	Drinking Driver is a subset of Alcohol Related.
6	Keeping Drivers Alert (Reduce Distracted Driving)	Driver Inatten- tion	FLAG.DISTRACTED=1	
8	Increasing Seat Belt Use and Improving Air Bag Effectiveness	Unbelted	FLAG.UNBELTED=1	
9	Making Walking and Street Crossing Safer	Pedestrian	FLAG.PEDESTRIAN=1	
10	Ensuring Safer Bicycle Travel	Bicycle	FLAG.BICYCLE=1	
11	Improving Motorcycle Safety and Increasing Motorcycle Awareness	Motorcyclist	FLAG.MOTORCYCLE=1	
12	Making Truck Travel Safer	Heavy Truck Related	FLAG.HEY_TRUCK_RELATED=1	
14	Reducing Vehicle/Train Crashes	Train and Trolley Crashes	FLAG.TRAIN_TROLLEY=1	
15	Keeping Vehicles on the Roadway	Run Off Road	FLAG.SV_RUN_OFF_RD=1	
16	Minimizing the Conse-	Fixed Object	FLAG.HIT_FIXED_OBJECT=1	
10	Road	Overturn	FLAG.OVERTURNED=1	
17	Improving the Design and Operation of Highway Intersections	Crash at Intersection	FLAG.INTERSECTION=1	
		Head-On	CRASH.COLLISION_TYPE="2"	
18	Reducing Head-On and Across-Median Crashes	Across-Median Collision	FLAG.CROSS_MEDIAN=1	
		Head-On and Across-Median Collision	FLAG.CROSS_MEDIAN=1 Or CRASH.COLLISION_TYPE="2"	
19	Designing Safer Work Zones	Work Zone	FLAG.WORK_ZONE=1	

02 😑 🖗 😑 😫 🚷
Sources: AASHTO and PennDOT guidance, and PennDOT crash data.

Note: Not all AASHTO emphasis areas are able to be queried in current databases.

The definition of aggressive driving that PennDOT uses aligns with the National Highway Traffic Safety Administration (NHTSA) definition of aggressive driving: "the operation of a motor vehicle involving two or more moving violations as part of a single continuous sequence of driving acts, which is likely to endanger any person or property." Driving acts may include:

- making illegal U-turn;
- making improper or careless turn;
- turning from wrong lane;
- proceeding without clearance after stop;
- running stop sign;
- running red light
- failure to respond to traffic control device (TCD);
- tailgating;
- sudden slowing or stopping;
- careless passing or lane change;
- passing in no-passing zone;
- making improper entrance to highway;
- making improper exit from highway;
- speeding;
- driving too fast for conditions; and
- driver fleeing police (police chase).

AASHTO **Emphasis Area** Criteria Criteria Details New Jersey Notes Database # Criteria Using age from Instituting Gradu-Occupants.Position In/On vehicle Occupants table Flag.YOUNG-= "01" and Age between 16 and 1 ated Licensing for Drivers Aged 16-20 provides better DRIVER = Yes Young Drivers 20 data for young drivers. **Ensuring Drivers** Unlicensed Driver or Charge = 39:3-10 (unlicensed Flag.UNLI-2 Are Fully Licensed Suspended or Revoked driver); 39:3-40 (suspended or CENSED = Yes and Competent License revoked license) Using DOB from Sustaining Flag.OLDER-Driver table has 3 Proficiency in Older Drivers Aged 65+ Drivers.Driver DOB DRIVER = Yes better data for Drivers older drivers. Aggressive Driving (unsafe speed, failed Contributing circumstance = to obey traffic control unsafe speed, failed to obey Any one of these device, failed to yield traffic control device, failed to Flag.AGGREScontributing **Curbing Aggressive** right of way to vehicle/ yield right of way to vehicle/ SIVE_DRIVING circumstances. 4 Driving = Yes See further notes pedestrian, improper pedestrian, improper passing, passing, improper lane improper lane change, following at end of table. change, following too too closely closely) Flag.ALCO-**Reducing Impaired** Impairment Due to 5 Alcohol Involved Crash = yes HOL_RELATED Driving Alcohol = Yes **Keeping Drivers** Flag.DRIVERI-Contributing circumstance = 6 Alert (Reduce **Driver Inattention** NATTENTION = driver inattention **Distracted Driving**) Yes **Increasing Driver** Increase Driver Safety 7 None Safety Awareness Awareness Increasing Seat This query checks Flag. Belt Usage and No Safety Equipment Occupants.safety equipment NoSaftyEqpt= 8 all occupants for Improving Air Bag Used used = none Yes seat belt use. Effectiveness Making Walking Collision w/MV code = Pedes-Flag.PEDES-9 and Street Pedestrian TRIAN = Yes trian **Crossing Easier Ensuring Safer** Flag.BICYCLE 10 Bicyclist (pedalcycle) Collision w/MV code = Pedalcycle **Bicycle Travel** = Yes Improving Motorcycle Safety Flag.MOTORCY-11 and Increasing Vehicle Type = Motorcycle Motorcyclist CLE = Yes Motorcycle Awareness Vehicle type = truck/trailer, Making Truck truck/trailer (bobtail), tractor/ Flag.TRUCK_ 12 Truck-Related Travel Safer semi-trailer, tractor/doubles, RELATED = Yes tractor/triples, heavy truck other Reducing Vehicle/ Collision w/MV code = Railcar -Flag.Railcar_ 14 **Highway Rail incidents Train Crashes** Vehicle Vehicle= Yes

Table D.2: Query Formats for New Jersey Crash Data

04 😑 🖗 😑 🖗 😫 🚯

TRANSPORTATION SAFETY ANALYSIS AND PLAN

AASHTO #	Emphasis Area	Criteria	Criteria Details	New Jersey Database Criteria	Notes
15	Keeping Vehicles on the Roadway	Run Off Road	Sequence of Events $(1 = \text{Run off} \text{Road}, \text{ or } 1 = \text{MV in Transport and} 2 = \text{Run Off Road})$	Flag.RUNOF- FROAD = Yes	
16	Minimizing the Consequences of Leaving the Road	Hit Fixed Object	Collision w/MV code = Fixed Object	Flag.HIT_FIXED_ OBJECT = Yes	
		Overturned	Collision w/MV code = Overturn	Flag.OVER- TURNED = Yes	
17	Improving the Design and Oper- ation of Highway Intersections	Crash at Intersection	Intersection = at intersection	Flag.INTERSEC- TION = Yes	
18	Reducing Head-On and Across-Median Crashes	Head-On Collision	Collision w/MV code = Head on	Flag.HEADON = Yes	
19	Designing Safer Work Zones	Work Zone	TemporaryTrafficControlZone = Construction Zone, Maintenance Zone, Utility Zone, Incident Zone	Flag.WORKZONE = Yes	

Sources: AASHTO and NJDOT guidance, and NJDOT crash data.

Note: Not all AASHTO emphasis areas are able to be queried in current databases. NJDOT does some additional analysis beyond the AASHTO emphasis areas; they are marked N/A in the AASHTO number field.

NJDOT has been using a definition of aggressive driving that involves any one of the list of contributing circumstances. They are investigating shifting to the newer NHTSA definition, which is "the operation of a motor vehicle involving two or more moving violations as part of a single continuous sequence of driving acts, which is likely to endanger any person or property." This more stringent definition inherently results in a much lower number. Also, initial reviews indicate issues with the data for the second contributing circumstance, as of 2010.

Transportation Safety Analysis and Plan: An Analysis of Crash Data and Recommended Safety Strategies for the Greater Philadelphia Region

PUBLICATION NUMBER 18021

DATE PUBLISHED	November 2018		
GEOGRAPHIC AREA COVERED	The nine-county Greater Philadelphia region, which includes the counties of Burlington, Camden, Gloucester, and Mercer in New Jersey; and Bucks Chester, Delaware, Montgomery, and Philadelphia in Pennsylvania.		
KEY WORDS	Crash Data, Philadelphia, Vision Zero, Crash Analysis, Safety, Regional Safety Task Force		
ABSTRACT	This is the fifth edition of the Transportation Safety Analysis and Plan ("the Plan"), formerly the Transportation Safety Action Plan. The Plan is a product of the Delaware Valley Regional Planning Commission (DVRPC) and the Regional Safety Task Force. The Plan analyzes the most recently available crash data for the nine-county Greater Philadelphia region in order to inform planners and roadway owners about the greatest contributing factors in severe traffic crashes. The Plan puts this information into different contexts, including geographic hot spots, year-over-year trends, and safety planning processes across the region. The Plan also presents recommended strategies to address the factors that contribute most to severe crashes in the region.		

STAFF CONTACT Kevin Murphy (215) 238-2864 kmurphy@dvrpc.org

190 N. Independence Mall West, 8th Floor Philadelphia, PA 19106-1520 Phone: (215) 592-1800 Fax: (215) 592-9125 www.dvrpc.org

190 N. Independence Mall West, 8th Floor Philadelphia, PA 19106-1520 Phone: (215) 592-1800 Fax: (215) 592-9125 www.dvrpc.org

Connect With Us! **f** | ♥ | ◎ | **in** | ►