GREATER PHILADELPHIA FUTURES GROUP

ENGAGE, COLLABORATE, ENVISION

TNC Infrastructure Implications 09.14.16

The Futures Group

A multidisciplinary group of stakeholders in Greater Philadelphia focused on understanding:

- How long-term change is occurring in the region.
- What its likely implications are.
- Make recommendations to more strategically position ourselves.

Greater Philadelphia Future Forces

Transportation Networking Companies

- 1. Equity issues
- 2. Cost: TNC vs. vehicle ownership
- 3. Public revenue impacts
- 4. Governmental role
 - a) Infrastructure implications: parking, curbside, etc.
 - b) Regulations
 - c) Institutional needs
- 5. Expand Parking & Amtrak Connection at PHL?

What-If Scenario

Smartphones, apps, and real-time information help people get around.

ødvrpc

A **platform** is a the physical and/or digital infrastructure that serves as a base upon which others can build, play, and/or iterate new applications, processes or technologies.

A **network** is a group of interconnected people and things.

- Source: Oxford Dictionary

Urban Areas are Physical Platforms

#MakingConnections | @dvrpc

"Digitization" of the Physical World

Empowering + Smart Cities + Platform Cities + Digital Cities + Connected Cities + Intelligent Cities + Shared Mobility

"Digitization" of Transportation

#MakingConnections | @dvrpc

DVRPC Long-Range Planning

#MakingConnections | @dvrpc

Crafting a Vision

Most Common Theme:

Build an Integrated, Multimodal Transportation Network

New Vision is Digital:

Integrated, Multimodal Transportation Network

#MakingConnections | @dvrpc

MOBILE APPLICATIONS IN URBAN SETTINGS: WAZE

Asta Zelenkauskaite, PhD Drexel University Challenging the notion of efficiency

S DrexelNOW

ARTS & ENTERTAINMENT SCIENCE & TECHNOLOGY BUSINESS & ENTREPRENEURSHIP

HEALTH

SOCIETY & CULTURE

SPORTS

CAMPUS & COMMUNITY

SPECIAL TOPICS

FACULTY EXPERTS

Asta Zelenkauskaite

Assistant Professor, Department of Culture and Communication

College of Arts and Sciences

Expertise:

COMMUNICATIONS	CULTURE			
SOCIAL MEDIA				
Contact:				
asta.zelenkauskaite@drexel.edu				

215.895.2455

Zelenkauskaite received her doctorate in Mass Communication from Indiana University, Bloomington, with two minor specializations in information science and linguistics. Her research focuses on the ways in which communication occurs through computer network environments as well as mobile telephony. She is interested in the changes that social media bring to mass media landscape by studying these phenomena from a multi-method approach to analyze changing understanding of content, audiences, and media companies. Most of her work bridges disciplinary boundaries methodologically and conceptually through her collaborative work with computer scientists and information science scholars.

More information about Zelenkauskaite

For news media inquiries, contact Emily Storz at els332@drexel.edu, 215.895.2705 (office) or 609.351.3592 (cell).

In the News

Jeff Gelles: Internet users want privacy, study finds

Dr. Asta Zelenkauskite, an assistant professor in the College of Arts and Sciences, was quoted in a *Philadelphia Inquirer* story on September 5 about Internet privacy.

Related Articles

No matching articles

Big Data Through Cross-Platform Interest-Based Interactivity

1/6

Asta Zelenkauskaite Drexel University Philadelphia, Pennsylvania, USA Email: az358@drexel.edu

Abstract-Given the ubiquity of social media, we capitalized on interest-based relevance as a key component to enhance user experience. Interest-based relevance modeling was extracted from user interaction in a cross-platform social media Big Data repository. The goal of this study was twofold: first we addressed theoretical dilemmas of a cross-platform user experience; second, we implemented an android-based mobile application and designed a cloud architecture to account for theoretical parameters of Big Data User-centric approach and interactivity. To address cross-platform Big Data challenges, we relied on cloud computing to perform computationally intensive operations such as searching, data mining, and data processing at large scale.

IEEEXplore*

Our use case was based on a cross-platform interest-based navigation and content filtering across multiple radio content streams. The streams consisted of tags from radio stations' programming and social media content through a discovery process. User interaction was geared to enable preferred topic filtering, flexibly shifting participation roles, notifications, and navigation

Interconnectedness of Complex Systems of Internet of Things through Social Network Analysis for **Disaster Management**

Asta Zelenkauskaite¹, Nik Bessis^{2,3}, Stelios Sotiriadis², Eleana Asimakopoulou² ¹ Department of Telecommunications, Indiana University, Bloomington, United States of America ² Distributed and Intelligent Systems Research Group, University of Derby, Derby, United Kingdom ³ Department of Computer Science and Technology, University of Bedfordshire, Luton, United Kingdom ¹astaze@gmail.com, ² (n.bessis, s.sotiriadis)@derby.ac.uk, ²eleana.asimakopoulou@googlemail.com

Abstract — This visionary paper presents the Internet of Things paradigm in terms of interdependent dynamic dimensions of objects and their properties. Given that in its current state Internet of Things (IoT) has been viewed as a paradigm based on hierarchical distribution of objects, evaluation of the dynamic nature of the hierarchical structures faces challenges in its evaluation and analysis. Within this in mind, our focus is on the area of complex social networks and the dynamic social network construction within the context of IoT. This is by highlighting and addressing the tagging issues of the objects to the real-world domain such as in disaster management: these are in relation to their hierarchies and interrelation within the context of social network analysis. Specifically, we suggest to investigate and deepen the

Bruno Simões Fondazione Graphitech Trento, Trentino, Italy Email: bruno.simoes@graphitech.it

underexposed. Single-platform SNSs, even historical ones, varied technologically and scope-wise, ranging from user demographics, geographical attributes, or mere maintenance of pre-existing relationships. Since 2003 specialized social networking sites became mainstream, focusing on specific interests such as traveling, activism, religion, photosharing, music listening, and video sharing to mention a few [2].

♦IEEE

evolved and broadened their scope over time. For exa access to Facebook is open to everyone, even if initia was restricted to college student networks.

Some of these limitations were addressed to over limited content access, platform interoperability issues lack of relevant content segmentation across multiple forms. Attempts to facilitate interest-based content access started to be modeled within a single platform. Son the techniques included "like" feature on Facebook; T

2012 Fourth International Conference on Intelligent Networking and Collaborative Systems

understood better by reacting to and with their environment in a more advanced and meaningful manner. It is also our vision that inter-connected smart objects could help the basis for an improved understanding of the environment as well as for an improved decision making in critical scenarios such as those evident in disaster management.

IoT has also been described as a paradigm that mainly integrates and enables several technologies and communication solutions including but not limited to tracking technologies, wired, wireless sensors, their networks, exchanged networked communication which in turn, lead to a shared next generation Internet (see more in [2]), what is also known as Future Internet. IoT has also been defined as "a world-wide network of interconnected objects

What's this?

Remediation and the Desire for

Immediacy To See and Be Seen: Celebrity Practice on Twitter Little Players, Big Shows

WAZE AS A SOCIOTECHNICAL SYSTEM

Convenience, efficiency, saving money

Community-driven

waze

waze

LIVE MAP MAJO

PPORT BLOG

Get the best route, every day, with real-time help from other drivers.

Waze is the world's largest community-based traffic and navigation app. Join other drivers in your area who share realtime traffic and road info, saving everyone time and gas money on their daily commute.

WAZE. OUTSMARTING TRAFFIC, TOGETHER.

Nothing can beat real people working together

Imagine millions of drivers out on the roads, working together towards a common goal: to outsmart traffic and get everyone the best route to work and back, every day.

SUCCESS STORIES

3 RECONFIGURED CONTEXTS

Point 1:

Alternative routes shift traffic from the main roads to the neighborhood roads.

Point 2:

"When everyone is special, nobody is special" principle [If everyone is diverted, then new traffic zones get created]

However, what are contexts that are relevant for the futures group?

Point 3:

Emergency situations and special events

DISCUSSION: UNPREDICTABILITY OF THE PLANNING

a. Mobile apps reconfigure density of the traffic use of what was initially planned:

- i. To what extent?
- ii. Which neighborhoods and how much and why?

iii. Which other Geospatial apps are the ones that may be part of the discussion?

- b. Mobile apps like Waze may influence the future of the planning:
- i. 'Dialog' with planning institutions?
- ii. Emergency planning together
- iii. Algorithmic power and data exchange

THANK YOU

az358@drexel.edu

Asta Zelenkauskaite

+ Pop-up Urban Mass Transit

- Direct, comfortable, right when you need it
- Track your vehicle's progress
- Data-driven, flexible service to meet dynamic demands of a city

- Massive growth of cities around the world
- Imperative that we get good at moving groups of people around in fewer vehicles
- People are becoming more discerning when they choose transportation modes due to the growing number of options
- Need to make mass transit efficient and comfortable

+ Urban Logistics Learner

- Understand how to move large groups of people and things around rapidly growing cities
- Iteratively learn movement patterns and transit needs of a city
- Explore different partnership models to make platform that can work in any situation

+ Infrastructure Needs

Physical / Technical infrastructure that facilitates on-demand mobility

Now

- Safe curb space for pick ups / drop offs
- Free wifi
- Kiosks for those without smartphones
- Future autonomous technology
 - Curb-car communication
 - Location for vehicles not in use
- Lots of possibility for new forms of Public-Private Partnerships

Mary Rose Fissinger maryrose@bridj.com

BUILDING THE FUTURE

DVRPC FUTURES FORCES

SEPTEMBER 14, 2016

FUTURE FORCES OF THE REGION

A CHANGING TRANSPORTATION LANDSCAPE

Frequent ride-hailing users less likely to own or drive a car, more likely to use a range of other transit options Source: Survey conducted Nov. 24-Dec. 21, 2015.

Source: Survey conducted Nov. 24-Dec. 21, 2015. "Shared, Collaborative and On Demand: The New Digital Economy"

PEW RESEARCH CENTER

FUTURE FORCES

2ND DENSEST DOWNTOWN IN U.S.

IN CENTER CITY BETWEEN 2010 & 2015:

- New Development Eliminated 2,426 Public Parking Spaces
- Employment in Core Center City Grew from 231,873 to 243,450 (+5.0%)
- Population in Core Center City Grew from 58,882 to 63,521 (+7.9%)
- Public Parking Occupancy Rates Actually <u>Declined</u> from 75.6% to 73.9% (-1.7%)
- Not Possible Without Transit

COMCAST INNOVATION & TECHNOLOGY CENTER

- REPLACED 360-SPACE PUBLIC PARKING LOT WITH 70-SPACE PRIVATE GARAGE
- DIRECT-CONNECT TO SUBURBAN STATION
- ▶ 1,121-FT SKYSCRAPER (9TH TALLEST IN U.S.)
- \$1.2 BILLION COMMERCIAL INVESTMENT

SEPTA - DVRPC FUTURES FORCES - SEPT 2016

62% OF ALL CENTER CITY/ UNIVERSITY CITY WORK TRIPS

WITH SEPTA: 2ND DENSEST DOWNTOWN IN UNITED STATES

62% OF ALL CENTER CITY/ UNIVERSITY CITY WORK TRIPS

WITHOUT SEPTA, 923 ACRES OF ADDITIONAL PARKING NEEDED – 28 COMCAST CENTERS OF SQUARE FOOTAGE JUST FOR CARS

SPACIAL EFFICIENCY OF MODES

SPACIAL EFFICIENCY OF MODES

FUTURE FORCES

INFORMATION-DRIVEN TRANSIT EXPERIENCE

SEPTA KEY EARLY ADOPTERS – JUNE 13, 2016

REAL TIME INFORMATION MODEM INSTALL UNDERWAY

INFORMATION-DRIVEN TRANSIT EXPERIENCE

Pricing

Enhanced transit passes

Integration with TNCs and other travel providers

Different passes for different commutes

A selection of pass-types to suit different travel frequencies and habits

Ease of Use

- Real-time information to consumers
 - Vehicle location and arrival time
 - Multi-modal information for trip planning

Payment options

Integrated SEPTA Key and mobile payments

Integrated transportation services

- First and last mile
- Mixed mode daily commutes

Leveraging Data

- Optimize SEPTA service through analysis of trips searched and taken
- Customized information, communication, and pricing models to consumers
- Data sharing?

INTEGRATED SERVICES

SEPTA & TNCs

First mile, last mile

- Supplement transit
- Improve transit's efficiency or extend reach

Integrated services and payments

Dallas integrates Uber into its transit app

Mixed mode route trips

- Payment integration for new types of commutes
- Loyalty program integration
 - Rewarding customers for using transit and TNCs in tandem

SEPTA/UBER PILOT PARTNERSHIP

- 40% discount for rides to and from 11
 Regional Rail Stations
- Summer 2016 (Memorial Day Labor Day)

How did it do?

-_(ツ)_/

Framework for Pilots

- Proof of Concept
- Scalability
- Data-sharing for tracking/evaluation

INTEGRATED INFORMATION

SEPTA & TNCs

- Integrated real-time info
 - Plan trips based on vehicles, not schedules
 - See transportation choices as a continuum
- Integrated mobile payment
 - Your device as your transportation hub

Data-driven transit experience

- Service improvements and optimization
- Customized information and suggestions to save customers time and money
- Data-sharing improves transit and TNCs

FUTURE FORCES OF THE REGION

BUILDING AN INTEGRATED MULTIMODAL NETWORK

Information-driven integration

- Payment methods and pricing models
- Real-time service information
- Leveraging resulting data

Data as infrastructure

- Multimodality will increasingly rely on
 - Information availability to customers
 - Information integration with providers
- Privacy concerns
- Travel data will help optimize
 - Transportation and city planning
 - Investments in physical infrastructure

"Competing" Transportation Theories

	Auto-Oriented	Active Transportation	Digital Transportation
Overall Goal	Increase mobility	Increase accessibility	Increase information
Land Use	Separation of uses	Mixed use, high density	Live / work where you want with recognition that density is more efficient
Trip priorities	High speed	Shorten trips, get exercise	Customization, cost, reliability, use time other than for driving
Safety	Safe mobility	Vision Zero	Connected technologies, warning systems, feedback loops, and data enhance safety
Key Metrics	Level-of-service, vehicle hours of delay, travel time index / savings	Bike/Ped level of service, trip length, total travel time, vehicle miles traveled, greenhouse gas emissions, transit trips	Real-time data, person throughput, wait time, personal ratings, Big Data and analytics
Investment Priorities	New and wider roads	Connections between modes; Walking, biking, and transit facilities	Multimodal Smart Roads that increase safety and efficiency
Rationale for Investment	Fight congestion; reduce delay	Build livable communities; sustainability; improve health	Create an integrated, multimodal network, profit (private market)

Source: DVRPC 2016, adapted from Lockwood, Ian. "Livable Traffic Engineering." CNU Orlando. Video published November 17, 2012. <u>https://www.youtube.com/watch?v=o7IXbIXNOPk</u>

#MakingConnections | @dvrpc

TNC Future Scenarios

Filling a Niche

Despite bursting onto the scene, TNC operators never manage to grow beyond specialized trips. Transit service is little affected by TNCs, with no substantial change in ridership.

A Tale of Two Regions

TNCs and transit agencies build partnerships in the region's denser developed areas, building an integrated, multimodal transportation network. Outside these areas the traditional auto-oriented transportation system remains in place.

The TNC Takeover

TNCs operate independently and are better able to quickly respond to changing market conditions. This has led to a significant scaling down of transit operations, which now consist primarily of rail operations and limited bus service.

ødvrpc

Transportation Reinvented

Transit redefines its operations, creates cooperative partnerships with new private market TNC services, and becomes the backbone of an integrated transportation network. Aggressive service expansion and big venture capital investments fuel long-term, rapid TNC growth.

TNC Survey Results

ødvrpc

The Scenario We Aren't Getting Into... Yet

#MakingConnections | @dvrpc

Thank You!

www.dvrpc.org/connections2045

#MakingConnections | @dvrpc

