

Exploring the Impact of Perceived Travel Environment on Escooter Riders' Stress Level

Wenwen Zhang, PhD

Assistant Professor, Rutgers Bloustein School

Prepared for DVRPC Regional Safety Task Force (RSTF) Meeting

06/23/2022

Project Team

Desheng Zhang

Robert Noland

Dimitris Metaxas

Jie Gong

Clinton Andrews

Wenwen Zhang

Yu Yang

Jennifer Senick

Stephanie Crozier

Yi Yu

Mihail Kaburis

Hailey Hensley

Plus Shuxin Zhong, Zhiying Zhu, Kelcie Ralph, Evan Bregenzer

RUTGERS Edward J. Bloustein School of Planning and Public Policy

Motivating Questions

- How do we increase the quality and quantity of data on pedestrian & micro-mobility risk?
- What factors increase the risk of vulnerable road user near-miss conflicts?
- How do we drive vulnerable road user fatalities to zero for all road users?

Project Timeline & Locations	Task Timeline (Leader)	2020	0 2021		202		22		2023		
	Dxx = deliverable	4	1	2	3 4	1	2	В	4 1	2	3
	Near miss detection capability										
	1.a. Baseline data sets (Gong)	D1			D	1		ſ	D1		
	1.b. Training data set (Gong)			D1 3							
	1.c. Computer vision (Metaxas)			D8 D)6						
	Social experiments										
	2.a. Behavioral exp. (Noland)						D10				
Hoboken & Jersey City New Brunswick & Highland Park	2.b. Road redesign exp. (Ralph)						D10				
	Technological experiments										
	3.a. Pedestrian app (Zhang)				01 3						
	3.b. Driver app (Zhang)				01 3						
	3.c. Connected camera (Zhang)				D1 3						
	3.d. Integrated system exp. (Zhang)					D7)8 ^C	D1 3		
	Community deliberations					1					
	4.a. Simulation model (Andrews)					D2		ſ	D3		
	4.b. Joint fact-finding (planning studio classes) (von Hagen)			D9			D9			D9	
	4.c. Reflective workshop (Noland)									C	D14
	Evaluation										
	a. IRB protocol approval (Andrews)										
	b. Sensor data adequacy (Gong)		D1 2								
	c. Near miss accuracy (Metaxas)				01 2						
	d. System connectivity(Zhang)					D1 2					
	e. Model validation (Andrews)				\perp			D1 2			
	f. Deliberation (von Hagen)								\perp		D12
	Community partner meetings										D5

Studio

Akshita Velpuru

Andrew Herrera

Jeff Kapala

Matt Lehner

Monika Pal

Nadya Fadilah

Rodas Bekele

Advisors

Leigh Ann Von Hagen AICP, PP

Tianrun Jiang

Hannah Younes Ph.D.

About Asbury Park

Pop-up Bike Lane Experiment

Study Objective

- Explore how e-scooter riders perceive their travel environment using biometric sensors
 - What have they paid attention to?
 - Are travelers focusing on objects that are found to be associated with incidents?
 - Head turning movement patterns?
- Is there any association between the perceived travel environment and travel stress level?

Eye-tracking Glass

- Tobii eye tracking glass 3
- Data collected:
 - Eye movement (fixation, 100hz, what have riders been focusing on)
 - Pupil dilation (100hz, track attention)
 - Front facing video (50hz)
 - Sound
 - Head movements

Eye-tracking Glass – Results Demo

Limitations in eye tracking data collection in the field

- Pupil dilation also influenced by shading
- Eye tracking rate drops when the rider moves towards the sun
- The glass only works for people who don't need glass or can wear eye contacts.

Computer Vision

• Image segmentation algorithm – PSPNet

Source: Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 2881-2890).

Eye-tracking data & Computer Vision

93.4% of fixation overlays with road and traffic-related objects: road, sidewalk, car, van, truck, pedestrians, bicycle, bus... streetlight, traffic light, signboard

Next step: Eye-tracking data & LiDAR data

Galvanic Skin Response Sensor

- The galvanic skin response refers to changes in sweat gland activity that are reflective of the intensity of our emotional state, otherwise known as emotional arousal.
- The sensor has been frequently used to measure stress level

Galvanic Skin Response Sensor - Demo

Limitations in GSR data collection in the field

- Weather condition matters
- Noises can be introduced by hand gesture and turbulations.
- Next step is to pair it with heart rate tracker to remove possible biases.

Synchronized eye tracking & GSR demo

Next steps

- In-depth gaze data analysis
- Develop models to explore possible associations between the perceived travel environment and travel tress level
- More data collection
 - Adding heart rate tracking sensor
 - Collect more sample data on Rutgers Campus or Newark
 - 30 samples of cyclists, pedestrian, and e-scooter rider data
 - Supported by Rutgers internal grant

NOROC *BRINGING SAFETY AND INSIGHTS TO OUR ROADS!* DVRPC : RSTF & IREG JOINT MEETING

+1 267 303 8284 <u>sean@noroc.co</u>

Noroc is a wholly owned brand of Fwd Inc.

In 2020 US vehicle crashes...

cyclists were killed +9.2% over 2019 highest since 1987

938

+ 42,337

additional cyclist crashes involving serious injury and property damage

People should leave the house and know they're going to get to their destination safely.

Pete Buttigieg, U.S. Transportation Secretary NHTSA's March 2022 report (<u>link</u>) & FIRST Tool (<u>link</u>)

Every 12 minutes and 11 seconds a cyclist and a motor vehicle crash into each other...

and every 9 hours and 22 minutes one of those cyclists dies.

VISION ZERØ

> Calculated from NHTSA's March 2022 report (<u>link</u>) and FIRST (<u>link</u>)

Bringing SAFETY and INSIGHTS to our roads!

NGI'GC SAFE AND SOUND

4

- Noroc is a data feed and messaging platform for riders, cities, OEMS, & operators to assess, enforce, and educate people regarding the safety of our roads.
- Noroc combines privacy-first proximity services with spatial AI devices to collect 1. near-miss crash data, 2.
 bike lane violations, and offer 3. real-time data feed.
- By offering ways to connect to every bike, e-bike, scooter, and helmet out there —we'll gain insights beyond the blue dot on a map IT'S WHAT'S HAPPENING AROUND YOU THAT MATTERS.

DATA COLLECTION for our "AS-BUILT" world and roads.

With spatial AI sensors on bikes we're collecting & mapping data to help...

UNDERSTAND & ADDRESS safety problems with enforcement and infrastructure

With spatial AI sensors on bikes we're collecting & mapping data to help...

UNDERSTAND & ADDRESS safety problems with enforcement and infrastructure

7

Just imagine Noroc on shared and owned —<u>bikes</u>, <u>e-bikes</u> and <u>scooters</u>!!!

D Bus lane enforcement cameras are here on B44 SBS buses

NYC DOT (<u>link</u>)

NEW YORK rolled out their bus lane enforcement cameras, AKA the "bus lane zapper" to enforce bus lane violations. **And they're investing heavily in this automated camera enforcement with a whopping \$85M from 2020-24!**

Bloomberg CityLab (link)

And IT'S CLEAR that road safety and enforcement is headed this direction

"Use license plate data to mail drivers a friendly postcard requesting more space."

Our turnkey safety projects collect, map, & share data

- ✓ Projects are focused on **"safety assessments"** for cities that cover the entire journey of where people ride —free from limitations to any specific road, intersection, or fixed-position sensor.
- This geolocation, object detection, and depth perception data will establish baseline measurements of Vulnerable Road User safety and provide the groundwork for enforcement and infrastructure campaigns focused on:
 - 1. near-miss crash data
 - 2. bike lane violations
 - 3. real-time safety messages
- Focused on developing open standards —we're offering to extend the definition of SAE's J2735 to include these new data fields so they can have the most impact across transportation infrastructure.

★ offering 20 new data fields beyond SAE's J2735 specification ★

...unlocking valuable ENFORCEMENT and INFRASTRUCTURE opportunities.

10

Noroc, as an app and a service...

- 1. record video, object detection¹, and depth² of all events
- 2. store the locations of events³ during each activity
- 3. identify obstructions in bike lanes
- 4. details of vehicles passing cyclists too close
- 5. OCR of vehicle license plates

¹ object detections collected between 30-40Hz
² depth calculations collected between 30-120Hz
³ GNSS location collected between 1-10Hz

Focused VRU Safety Data Collection

11

Safe Streets and Roads for All

<u>ACTION PLANS &</u> IMPLEMENTATION GRANTS

- data-driven approach to prevent fatalities
- equity across all communities and all populations
- traffic law enforcement
- new vehicle or other transportation-related technologies
- mechanisms for evaluating the outcomes

With these resources we'll do everything we can to save lives on America's roads!

DATA COLLECTION

Collect *near-miss crash* data, *bike lane violations*, and offer a *real-time data feed* to better understand safety problems

ENFORCEMENT

Calm *vehicle speeds,* increase *passing distances*, and clear the *bike lanes* in a fair and equitable manner *across all communities where people ride*

INFRASTRUCTURE

Maximize the value of **existing and new infrastructure** investment decisions

Sean Connelly Founder & CEO +1 267 303 8284 sean@noroc.co

