

We Make a Difference

Shared Transportation Services Mobile Application Data Support

Stephen W. Holt GIT Associate II, UAS Pilot Stephen.Holt@mbakerintl.com

Overview

- Project Background
- General Transit Feed Specification (GTFS)
- North Jersey Transportation Planning Authority (NJTPA)
- Michael Baker Project Development
 - Project Tasks
 - Workflow Process
 - ETL Process
 - Operational Dashboard
 - Unified GTFS Feed

Project Purpose

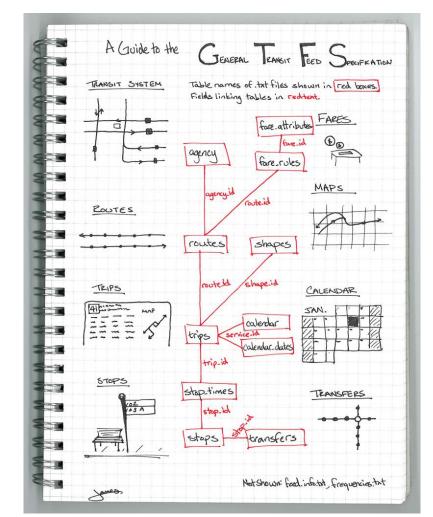
- To develop a data workflow plan supporting mobile applications that improve access to shared transportation services.
- The plan meets General Transit Feed Specification (GTFS) standards and details an interagency coordination framework for standardizing, exchanging, compiling and maintaining shared services data for use in mobile applications.

What is GTFS?

The General Transit Feed Specification (GTFS) defines a common format for public transportation schedules and associated geographic information. GTFS "feeds" let public transit agencies publish their transit data and developers write applications that consume that data in an interoperable way.

Required:

- Agency
- Stops
- Routes
- Trips
- Stop Times
- Calendar


Optional:

- Calendar Dates
- Fare Attributes
- Fare Rules
- Shapes
- Frequencies
- Transfers
- Feed Info

Filename	Required	Defines
agency.txt	Required	One or more transit agencies that provide the data in this feed.
stops.txt	Required	Individual locations where vehicles pick up or drop off passengers.
routes.txt	Required	Transit routes. A route is a group of trips that are displayed to riders as a single service.
trips.txt	Required	Trips for each route. A trip is a sequence of two or more stops that occurs at specific time.
stop_times.txt	Required	Times that a vehicle arrives at and departs from individual stops for each trip.
calendar.txt	Required	Dates for service IDs using a weekly schedule. Specify when service starts and ends, as well as days of the week where service is available.
calendar_dates.txt	Optional	Exceptions for the service IDs defined in the calendar.txt file. If calendar_dates.txt includes ALL dates of service, this file may be specified instead of calendar.txt.
fare_attributes.txt	Optional	Fare information for a transit organization's routes.
fare_rules.txt	Optional	Rules for applying fare information for a transit organization's routes.
shapes.txt	Optional	Rules for drawing lines on a map to represent a transit organization's routes.
frequencies.txt	Optional	Headway (time between trips) for routes with variable frequency of service.
transfers.txt	Optional	Rules for making connections at transfer points between routes.
feed_info.txt	Optional	Additional information about the feed itself, including publisher, version, and expiration information.

GTFS Reference

- Text Files (.txt)
 - 6 Required
 - 7 Optional
- Required & Optional Fields
- File Requirements
 - Comma-delimited
 - Dataset Unique
 - Standard Naming
 - Local Language
 - Case Sensitive
 - Encoded In UTF-8
 - Zipped

Example of GTFS Data

stops.txt - Notepad

File Edit Format View Help

stop_id,stop_code,stop_name,stop_desc,stop_lat,stop_lon,zone_id,stop_url, location_type,parent_station,stop_timezone,wheelchair_boarding P100,,Redding Circle,,40.373062,-74.661004,,,0,,, P101, Princeton Shopping Center, 40.364095, -74.652144, , 0, , P102, Witherspoon & Valley Road, 40.360607, -74.664508, ,,0,,, P103,,Witherspoon & Franklin,,40.356125,-74.662616,,,0,,, P104,,Witherspoon/Wiggins,,40.352123,-74.660047,,,0,,, P105,,Hamilton & Moore,,40.353685,-74.655828,,,0,,, P106, Hamilton & Chestnut, 40.354976, -74.653767, , ,0, , P107, North Harrison/Spruce Circle, 40.35558, -74.646968, ,,0,,, P108, Nassau St & Maple St, 40.352631, -74.650141, , 0, , P109,,Nassau St & Moore,,40.351369,-74.654321,,,0,,, P110, Nassau St/Palmer Square, 40.349482, -74.660757, ,,0,,, P111,,Princeton Station,,40.341987,-74.659227,,,0,,, P112, , Monument Hall / PSRC, ,40.348453, -74.666058, ,0, ,, P113, Elm Court / Harriet Bryan, 40.352311, -74.679954, ,,0,,, P114, Nassau St / Palmer Square, 40.34929, -74.660757, ,,0,,, P115,,Princeton Community Village,,40.376939,-74.648632,,,0,,, P116,,Hill Top Shelter,,40.376434,-74.652344,,,0,,, P117, Nassau St & Moore, 40.351219, -74.654278, ,,0,,,

Michael Baker INTERNATIONAL

How do you get from this...

Montour Falls

Schuyler County Transit Schedule

STOP	DESTINATION	TIME OF DEPARTURE								
Express Service leaves 12th St. & Porter St. at 7:23AM and arrives at Walmart at 7:30 AM										
2	Wal-Mart	7:30	8:30	9:30	10:30	11:30	1:30	2:30	3:30	4:30
3	Seneca Harbor Prk/ Jeff. Vlg.	7:35	8:35	9:35	10:35	11:35	1:35	2:35	3:35	4:35
4	Decatur & 9th	7:42	8:42	9:42	10:42	11:42	1:42	2:42	3:42	4:42
5	12th St. & Porter St.	7:44	8:44	9:44	10:44	11:44	1:44	2:44	3:44	4:44
6	Tops/CVS	7:49	8:49	9:49	10:49	11:49	1:49	2:49	3:49	4:49
7	Primary Care	7:56	8:56	9:56	10:56	11:56	1:56	2:56	3:56	4:56
8	Schuyler Hospital	8:01	9:01	10:01	11:01	12:01	2:01	3:01	4:01	5:01
9	Main St. & Montour St MF	8:04	9:04	10:04	11:04	12:04	2:04	3:04	4:04	5:04
10	Human Services Complex	8:07	9:07	10:07	11:07	12:07	2:07	3:07	4:07	5:07
	Havana Glen	8:11	9:11	10:11	11:11	12:11	2:11	3:11	4:11	5:11
11	Broadway St MF	8:16	9:16	10:16	11:16	12:16	2:16	3:16	4:16	5:16
	Rock Cabin Park—MF	8:20	9:20	10:20	11:20	12:20	2:20	3:20	4:20	5:20
12	Odessa Municipal Building	8:30	9:30	10:30	11:30	12:30	2:30	3:30	4:30	5:30

art Express	1B - Mi	d-Day Odessa-Watk	ins Express
TIME	STOP	DESTINATION	TIME
12:30	12	Odessa	12:30
12:35	5	12th & Porter	12:40
1:20	5	12th & Porter	1:20
1:30	12	Ödessa	1.30

ROUTE 1B (Odessa to Watkins Glen)

1A - Mid-Day Watkins-Walma

STOP DESTINATION

5 12th & Porter

5 12th & Porter 2 Walmart

2 Walmart

KEY:

Bus Stop ★ Bus Route -

STO	DESTINATION	TIME OF DEPARTURE								
	Express service leaves 12th St. & Porter St. at 7:15 AM and arrives at Odessa Municipal Bldg. at 7:30 AM									
12	Odessa Municipal Building	7:30	8:30	9:30	10:30	11:30	1:30	2:30	3:30	4:30
	Rock Cabin Park—MF	7:37	8:37	9:37	10:37	11:37	1:37	2:37	3:37	4:37
11	Broadway St MF	7:42	8:42	9:42	10:42	11:42	1:42	2:42	3:42	4:42
10	Human Services Complex	7:46	8:46	9:46	10:46	11:46	1:46	2:46	3:46	4:46
	Havana Glen	7:50	8:50	9:50	10:50	11:50	1:50	2:50	3:50	4:50
9	Main St. & Montour St MF	7:53	8:53	9:53	10:53	11:53	1:53	2:53	3:53	4:53
7	Primary Care	7:56	8:56	9:56	10:56	11:56	1:56	2:56	3:56	4:56
8	Schuyler Hospital	8:01	9:01	10:01	11:01	12:01	2:01	3:01	4:01	5:01
6	Tops/CVS	8:08	9:08	10:08	11:08	12:08	2:08	3:08	4:08	5:08
5	12th St. & Porter St.	8:13	9:13	10:13	11:13	12:13	2:13	3:13	4:13	5:13
4	Decatur & 9th	8:18	9:18	10:18	11:18	12:18	2:18	3:18	4:18	5:18
3	Seneca Harbor Prk./ Jeff. Vig.	8:23	9:23	10:23	11:23	12:23	2:23	3:23	4:23	5:23
2	Wal-Mart	8:30	9:30	10:30	11:30	12:30	2:30	3:30	4:30	NS

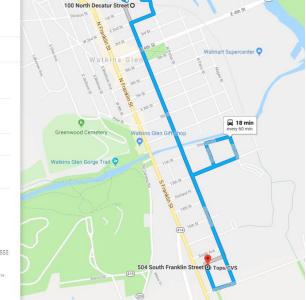
Seneca Lake Pier 🤤 7:36 AM (Thursday) - 7:54 9 < 0 AM (18 min) 🛱 1a 100 North Decatur Street O 7:37 AM from Seneca Harbor Park ≮ 1 min every 60 min SCHEDULE EXPLORER 7:36 AM O 100 N Decatur St Watkins Glen, NY 14891 Walk × About 1 min , 131 ft C

Seneca Harbor Park 7:37 AM 0

1a Odessa ✓ 17 min (3 stops)

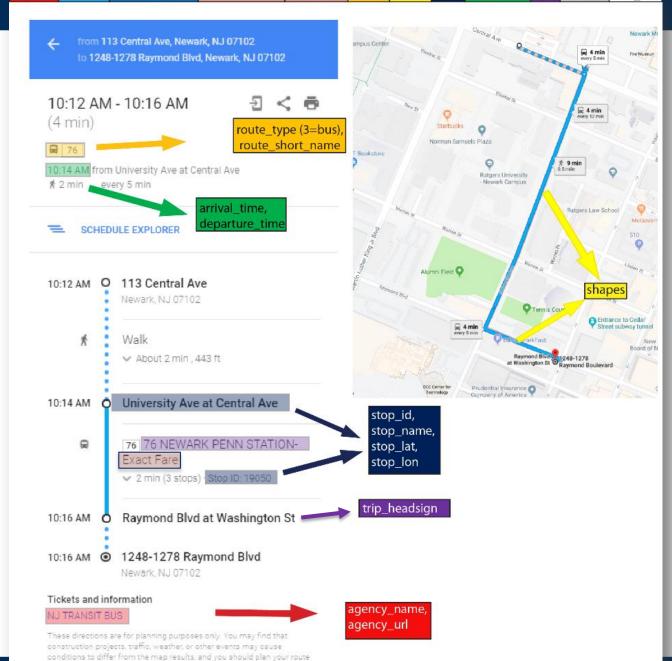
7:54 AM O Tops/CVS

7:54 AM 💿 504 S Franklin St Watkins Glen, NY 14891


Tickets and information

Schuyler County Transit - Ticket information - 1 (607) 535-3555

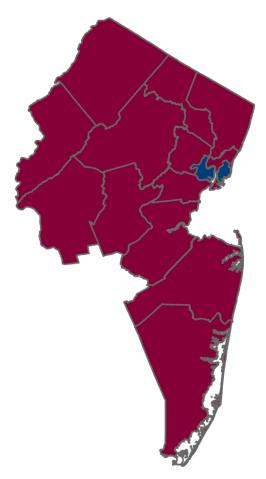
These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your noute accordingly. You must obey all signs or notices regarding your route.


To this...

We Make a Difference

agency calendar calendar_dates fare_attributes fare_rules routes shapes stops stop_times trips transfers feed_info

Michael Baker


accordingly. You must obey all signs or notices regarding your route.

North Jersey Transportation Planning Authority

The Metropolitan Planning Organization for Northern New Jersey

NJTPA Region

Bergen	Morris
Essex	Newark
Hudson	Ocean
Hunterdon	Passaic
Jersey City	Somerset
Middlesex	Sussex
Monmouth	Union
	Warren

North Jersey Transportation Planning Authority

The Metropolitan Planning Organization for Northern New Jersey

STANDING COMMITTEES

Planning & Economic Development Committee Project Prioritization Committee Freight Initiatives Committee

10

Project Goals

- Develop lines of communication with shared ride agencies for publishing and maintaining shared transportation data
- Establishment of a standardized data template and workflow for data exchange
- Development of a geospatial database of both public and private shared transportation services
- Publication of a standardized GTFS data feed

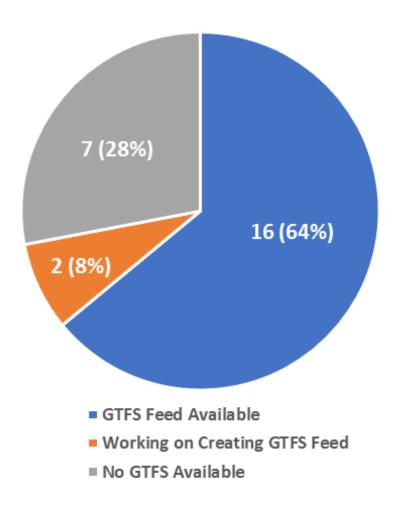
Project Tasks

Task 1 – Needs Assessment

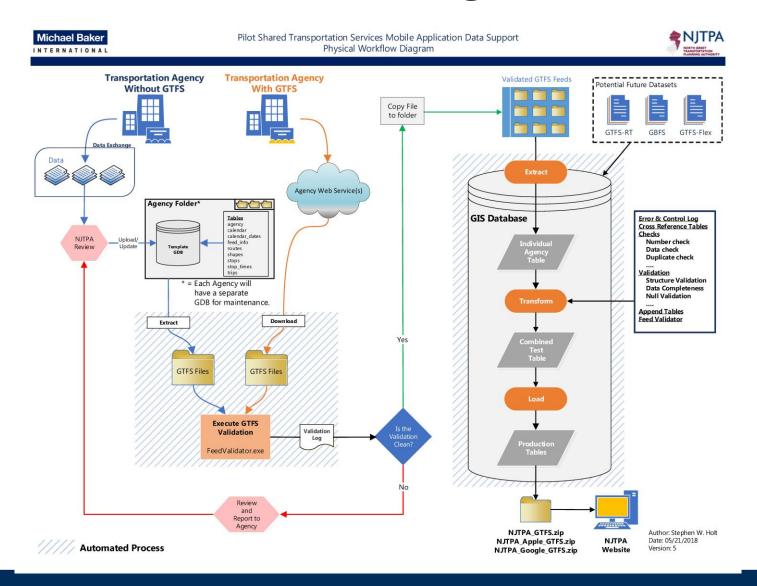
Task 2 – Data Model and Workflow Process Development

Task 3 – General Transit Feed Specification (GTFS) Data Conversion

Task 4 – Documentation, Maintenance and Training

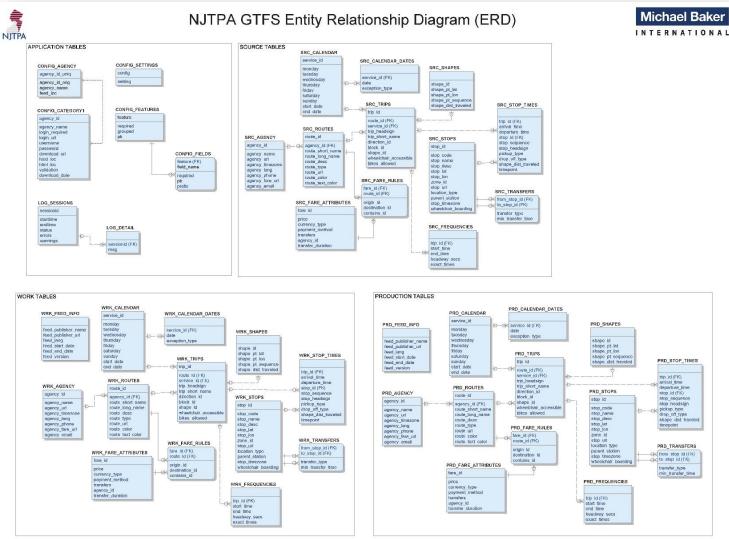

Task 5 – Project Management

Data Categorization


Category	Description	GTFS Data	Online Data	Structured Data	
Category 1	GTFS data available	Yes	Yes	Yes	
Category 2	Online, structured data	No	Yes	Yes	
Category 3	Online, non-structure data	No	Yes	No	
Category 4 Offline, structured data		No	No	Yes	
Category 5	Offline, non-structured data	No	No	No	

- Bloomfield Township
- Coach USA (x6)
- Cross County Connection TMA (x4)
- EZ Ride
- Greater Mercer TMA (x2)
- Middlesex County Area Transit
- Monroe Township
- New Jersey Transit Corporation (x2)
- Ocean County Transportation
- Our Bus
- Princeton Municipality
- Somerset County
- Sussex County Skylands Ride
- Trans-Bridge
- Warren County

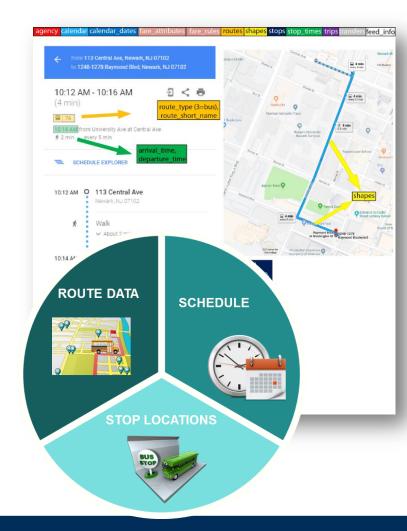
Participating Agencies



Workflow Diagram

Michael Baker

GTFS Entity Relationship Diagram


04/25/2018

Drawn By: J. Furch

Data Conversion

- Step 1 Gather Bus Stop Locations
 - XY coordinates, assign unique stop_id's
- Step 2 Build Schedules
 - Build the schedules stop-by-stop to generate stop_times and trips.
- Step 3 Generate Shapes
 - Using GIS, create the physical path the vehicle takes.
- Step 4 Generate and Validate
 - Fill-in additional data
 - Export and compress data files .zip
 - Feed Validator and Schedule Viewer

GTFS Maintenance

Agency Responsibility

- Maintain GTFS data in specified format
- Provide NJTPA with updated GTFS feed
- Upload to SharePoint
- Provide updates at least two (2) weeks prior to the start of the new feed

NJTPA's Role

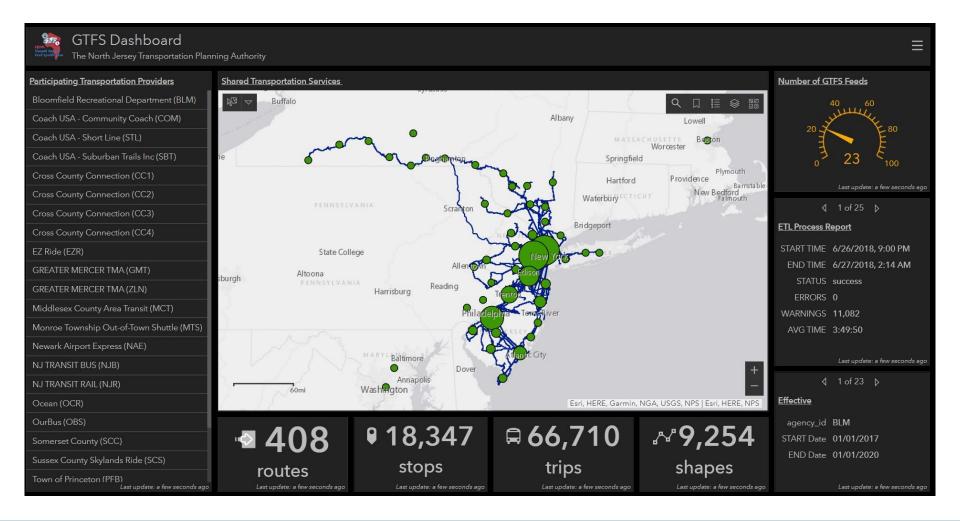
- Publish unified GTFS feed to NJTPA's website and third party application on bi-weekly basis
- Maintain data model to adhere to the GTFS standards
- Quarterly email to transit providers

Statewide Unified GTFS feed

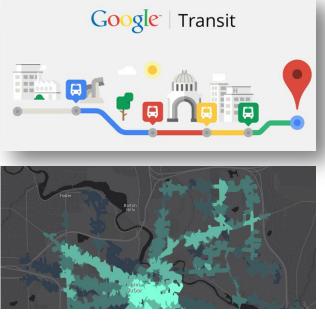
NJTPA GTFS (zip file)

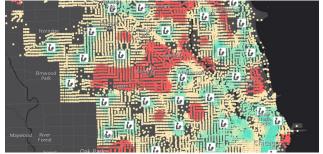
An agency outreach plan was developed, with input from the Technical Advisory Committee and participating transit providers. A questionnaire was defined and included in the outreach plan. The questionnaire served as a tool to gather information about existing agency data that could be employed as input to the Pilot Shared Transportation data sets. Once the data was collected a detailed analysis of the participating agencies transit information was conducted.

Based on the data analysis each agency was then classified into one of two categories. Agencies that currently have GTFS data feeds and agencies that do not. These two categories laid the foundation for designing and creating the Agency Data Workflow. This workflow defines how participating agencies will regularly update and maintain their GTFS data. By leveraging existing NJTPA technology and expertise along with industry best practice the Shared Transportation Services Application Data Model was built. As NJTPA receives new and updated data from the agencies it will be uploaded into this data model. The Pilot Shared Transportation Services Mobile Application Database can regularly produce the combined public GTFS feed. This public-facing, free-to-use GTFS feed will ultimately result in improved access to regional transportation options in accord with NJTPA's Goals and Objectives.


It was found that the largest challenge with managing and maintaining these datasets is participation from each of the share-ride agencies, which includes providing properly formatted data for dissemination. Some options to consider for streamlining this process includes:

- NJTPA providing a standardized website and/or tools for the agencies to maintain these datasets.
- Active participation from the share-ride agencies
- · More involvement of the TMAs to gather, manage, and maintain the data.


https://www.njtpa.org/data-maps/tools/


GTFS Dashboard

Benefits

- Increased ridership
- Promotes alternative transportation
- Promotes agency's website & services
- Participation is free
- Application use
 - Journey Planning
 - Accessibility Research
 - Comparing Service Levels

Lessons Learned

- Leading edge project
- Gaps in data tools
- Agency participation
 - Designated contact
 - Active involvement
- Agency categorization
- TMA involvement
 - Outreach

r 1	Will	Learn	my	Lesson	2
11	WILL	Learn	my	Lesson	
	WILL	Learn	my	Lesson	
	WILL	Learn	my	Lesson	
	WILL	Learn	my	Lesson	
	WILL	Learn	my	Lesson	
	WILL	Learn	my	Lesson	
7	ter success				1

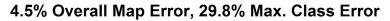
Thank You

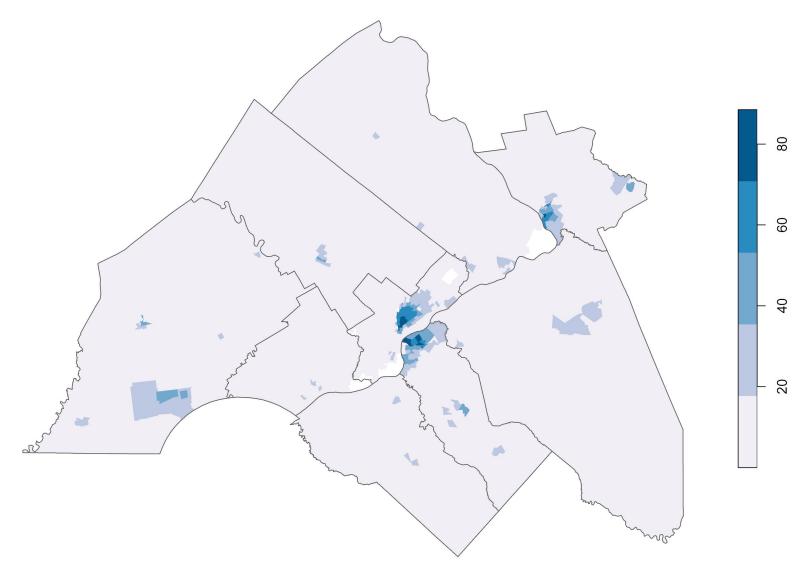
Stephen W. Holt | GIT Associate II, UAS Pilot | Michael Baker International 300 American Metro Boulevard | Hamilton, NJ 08619 | [O] <u>609-807-9505</u> <u>Stephen.Holt@mbakerintl.com</u> | <u>www.mbakerintl.com</u> Addison Larson IREG 12/12/18

Mapping with sample error in mind

Hispanic or Latino Origin, 2016 ACS, Table B03003, 5-Class Quantile, Block Group

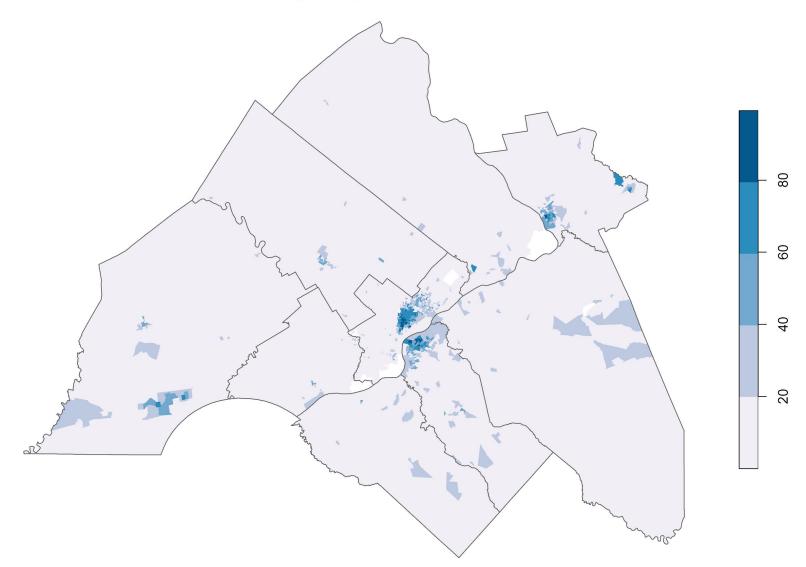
Tool demo https://aplarson.shinyapps.io/ MapClassificationAutoreporter/


Geography
 Number of classes
 Classification scheme



Geography Number of classes Classification scheme

Geography: Tract

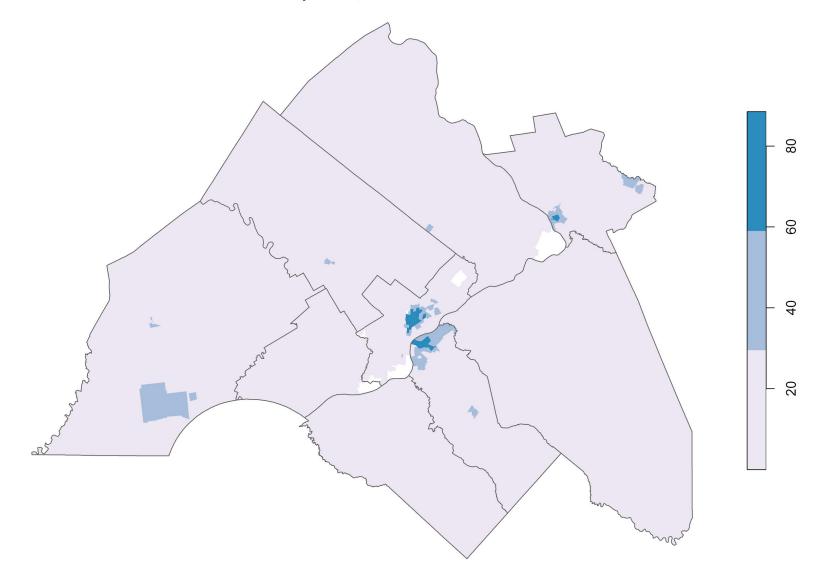


ødvrpc

Geography: Block Group

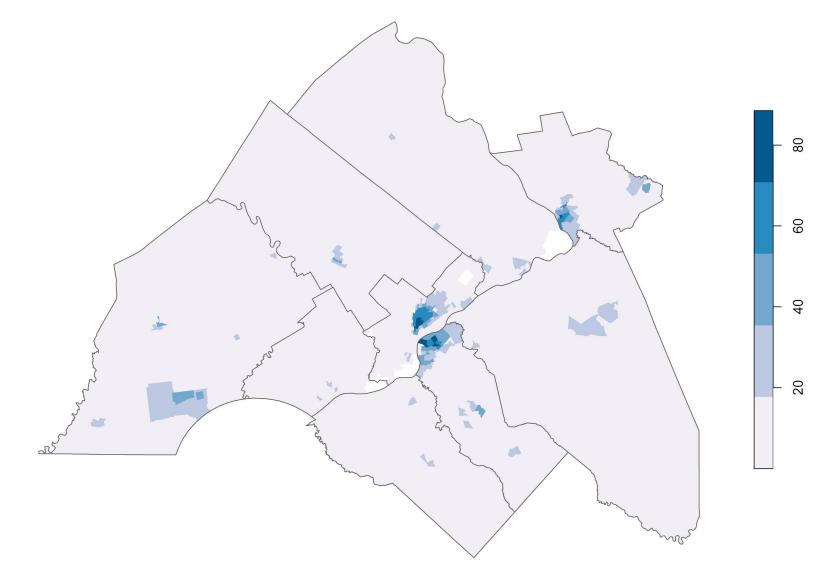
10.9% Overall Map Error, 49.8% Max. Class Error

@dvrpc



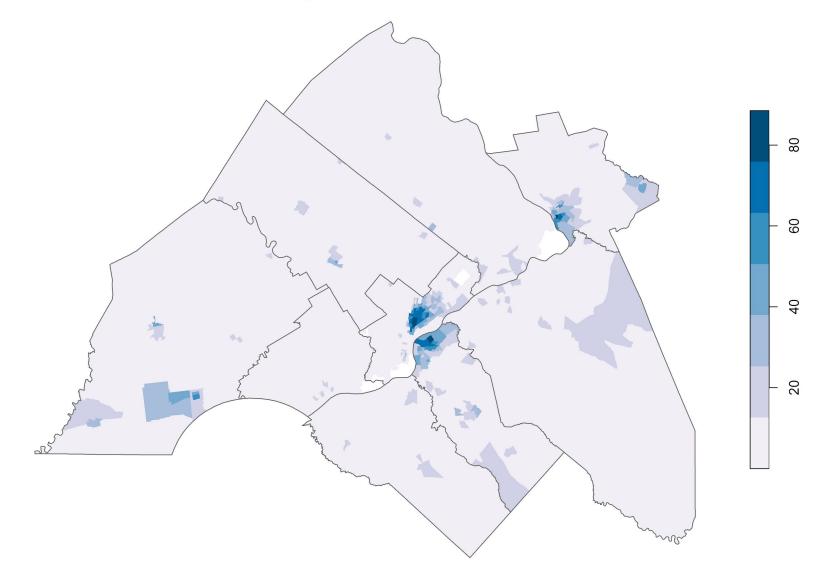
Geography Number of classes Classification scheme

1.7% Overall Map Error, 20.3% Max. Class Error



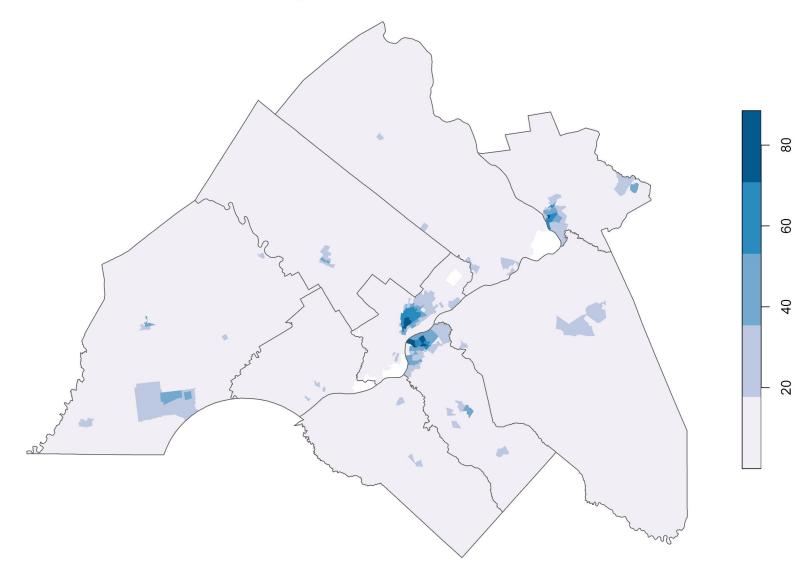
ødvrpc

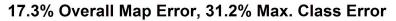
@dvrpc

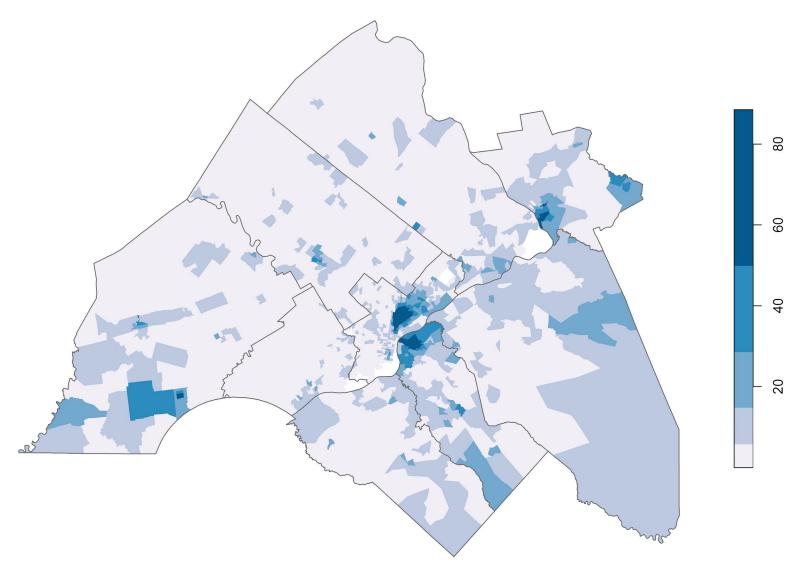

4.5% Overall Map Error, 29.8% Max. Class Error

@dvrpc

8.2% Overall Map Error, 40.4% Max. Class Error

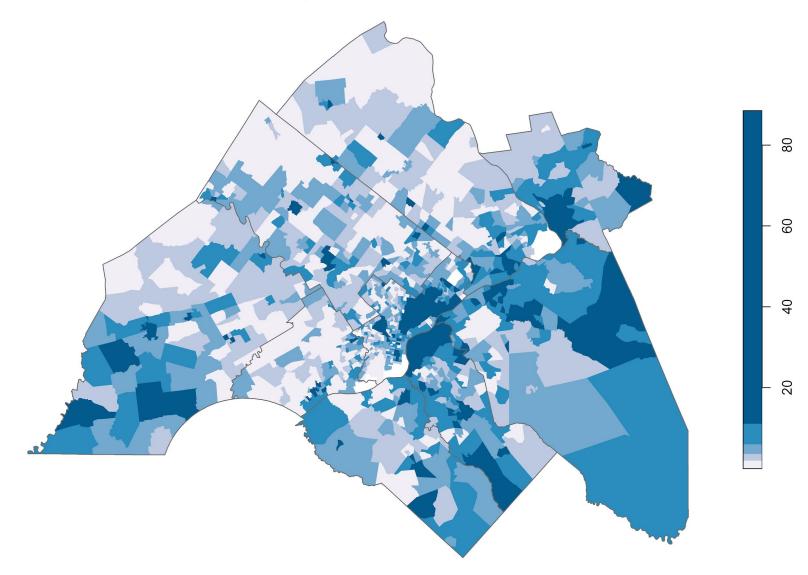

Geography
 Number of classes
 Classification scheme


Classification: Equal Interval


4.5% Overall Map Error, 29.8% Max. Class Error

ødvrpc

Classification: Jenks



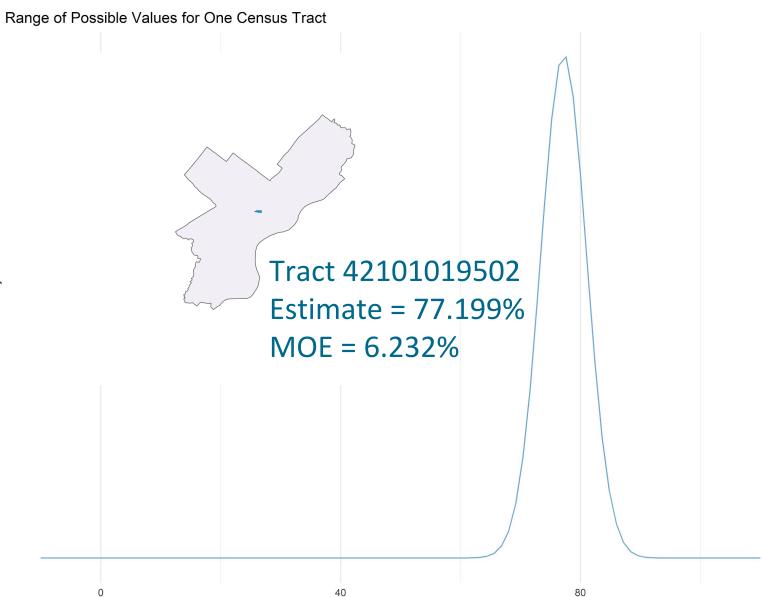
ødvrpc

Classification: Quantile

37.2% Overall Map Error, 57.9% Max. Class Error

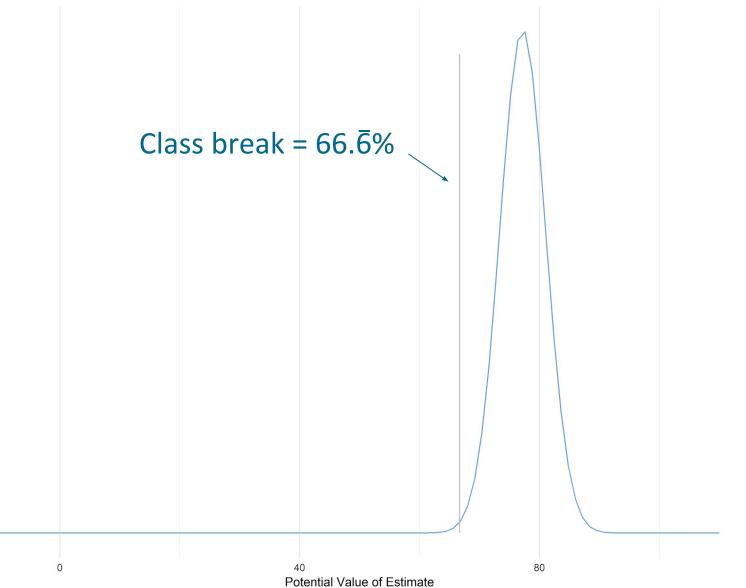
@dvrpc

Error by tract
 Error by class
 Overall error
 Recap



Error by tract
 Error by class
 Overall error
 Recap

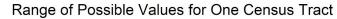
Error by tract

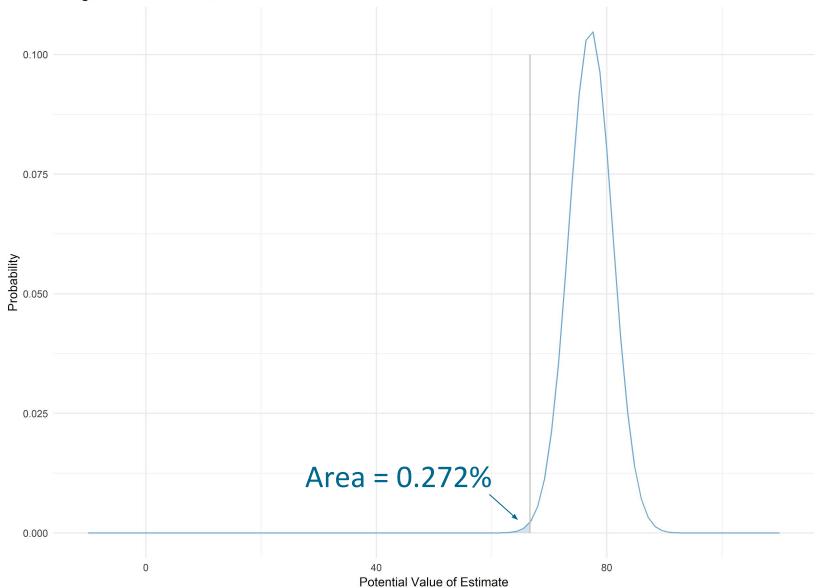

ødvrpc

Potential Value of Estimate

Error by tract

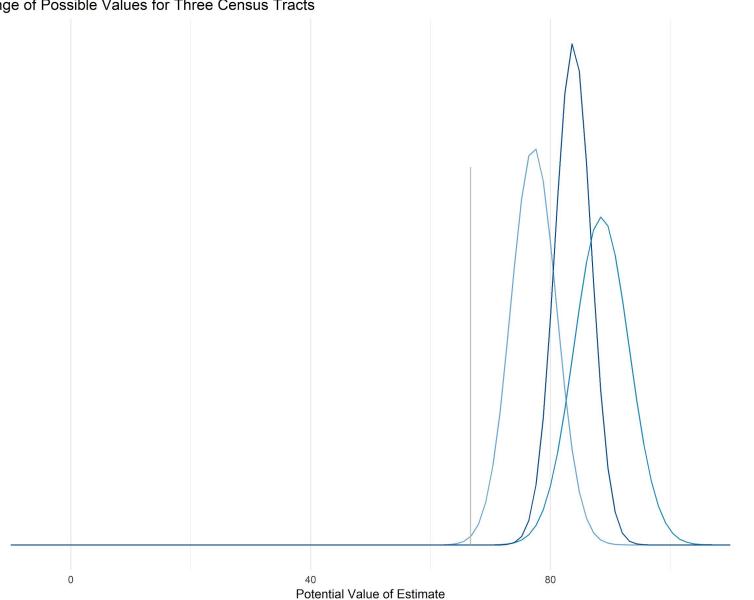
Range of Possible Values for One Census Tract




ødvrpc

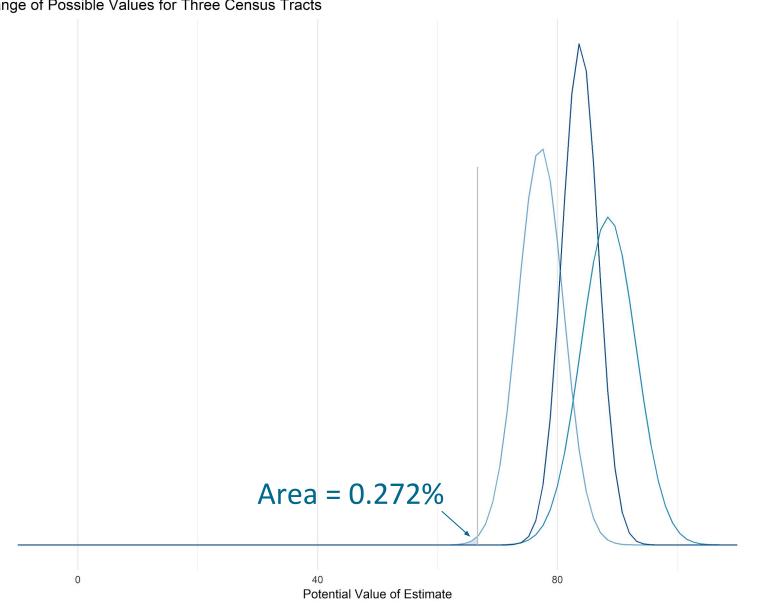
Probability

Error by tract



Error by tract
 Error by class
 Overall error
 Recap

Error by class


Range of Possible Values for Three Census Tracts

ødvrpc

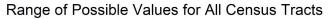
Error by class

Range of Possible Values for Three Census Tracts

ødvrpc

Tract	Est.	MOE	Lower Bound Error	Upper Bound Error	Tot. Error
42101019502	77.2%	6.2%	0.272%	0%	0.272%
42101017601	88.5%	7.6%	0%	0%	0%
42101017602	83.8%	4.9%	0%	0%	0%
			·	Sum of Errors	0.272%

Class Error = (Sum of Errors / No. of Estimates) = (0.272% / 3) = 0.091%


Error by tract
 Error by class
 Overall error
 Recap



Overall error

Probability

ødvrpc

Class

Bottom

Bottom

Est.	MOE	Min. Value	Max. Value
17.7%	3.6%	14.1%	21.3%
5.2%	3.5%	1.7%	8.7%
38.2%	11.0%	27.2%	49.2%

ødvrpc

Middle	38.2%	11.0%	27.2%	49.2%
Middle	66.2%	7.5%	58.8%	73.7%
Тор	77.2%	6.2%	71.0%	83.4%
Тор	88.5%	7.6%	81.0%	96.1%
Тор	83.8%	4.9%	78.8%	88.7%

Class	No. of Estimates	Mean Class Error
Bottom	2	0%
Middle	2	34.837%
Тор	3	0.091%
	Overall	9.994%

Overall error is the mean class error weighted by the number of observations.

Class	No. of Estimates	Mean Class Error
Bottom	2	0%
Middle	2	34.837%
Тор	3	0.091%
	Overall	9.994%

Maps are considered reliable if no class error exceeds **20%** and the overall error is below **10%**.

Verdict: Overall error is OK, but class error is not.

Error by tract
 Error by class
 Overall error
 Recap

- Each estimate has expected lower and upper bound classification error
- Class error built from mean of estimate errors
- Overall map error is weighted mean class error
- Reliability cutoffs:
 - 20% by class
 - 10% overall

Tool demo https://aplarson.shinyapps.io/ MapClassificationAutoreporter/

Future plans

Create more reliable census geographies

- Aggregate DVRPC tracts to larger geographies using data-driven regionalization (see <u>code</u> and <u>paper</u>)
- Aggregate Philadelphia, Camden, and Trenton tracts to larger geographies using existing neighborhood maps
- Compare results Evaluate 2016 CTPP release
- Geographies, variables, contexts
- "CV viewer"

Addison Larson alarson@dvrpc.org https://github.com/addisonlarson/MapReliabilityTool

Fancy CARTO, Made Easy: VL and Airship

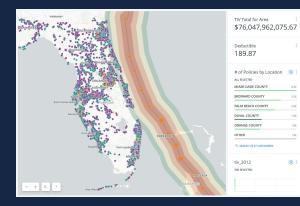
bit.ly/ireg-carto-libraries

Andrew Thompson

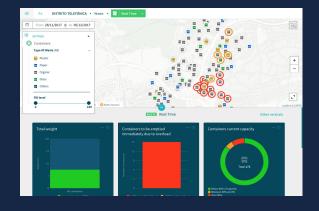
Solutions Engineer

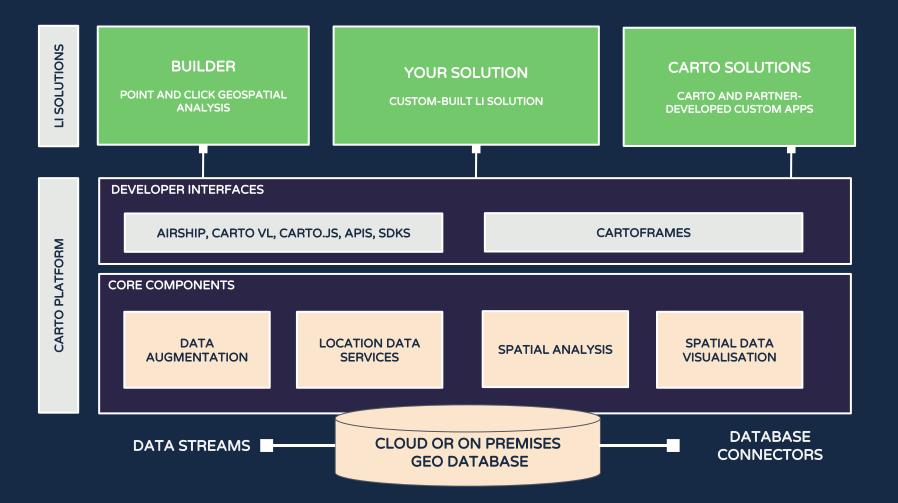
THE CARTO PLATFORM MAKES LOCATION DATA ACTIONABLE FOR ALL USER TYPES

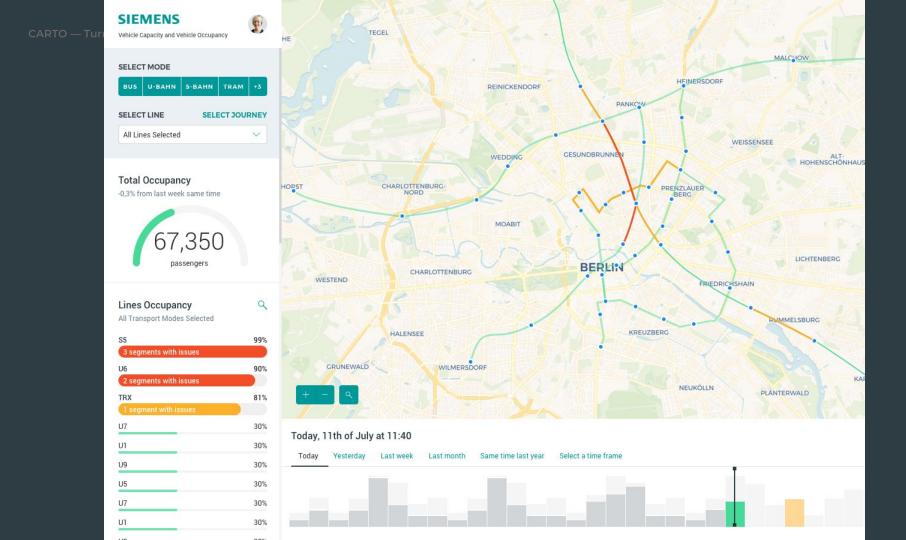
ANALYSTS & BUSINESS USERS

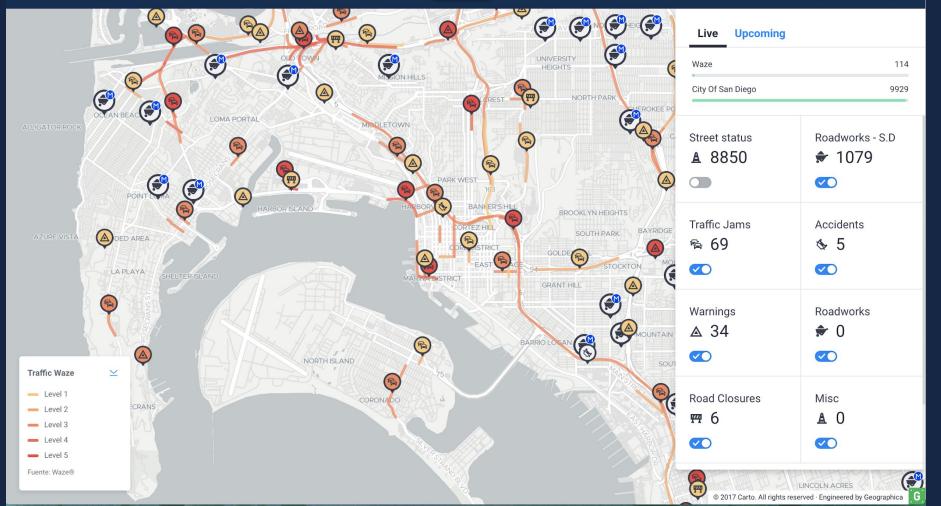

Out of the box location intelligence for analysts to create and use intuitive maps and map-based dashboards.

DATA SCIENTISTS


Powerful data science and analysis tools for understanding, predicting, and optimizing.


DEVELOPERS

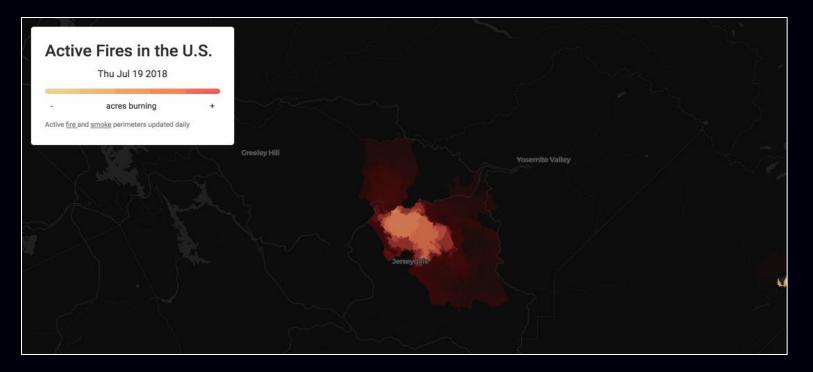

Industrial grade APIs, SDKs and tools for developers to build world class geospatial apps.



traffico

Real-Time

CARTO Javascript Map Libraries


Connect the CARTO platform's geospatial backend to the browser

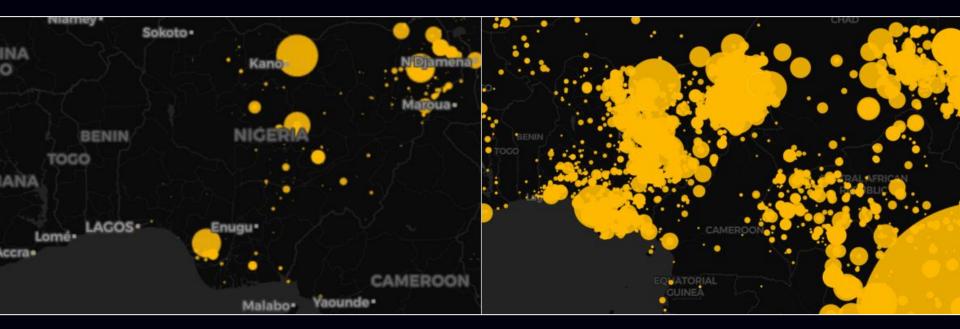
Use and extend the Auth, Maps, and SQL APIs

CARTO.js for "raster" tiles with Leaflet/GMaps and SQL/CartoCSS

CARTO VL for "vector" tiles with MapboxGL and SQL/VL-Style

→ CARTO VL is a javascript library to build location intelligence applications using the power of vector rendering technology.

Raster (CARTO.js):


> Image tiles (PNG) rendered on remote server

Database query processed through Mapnik and CartoCSS styling language, returns images to browser

Vector (CARTO VL):

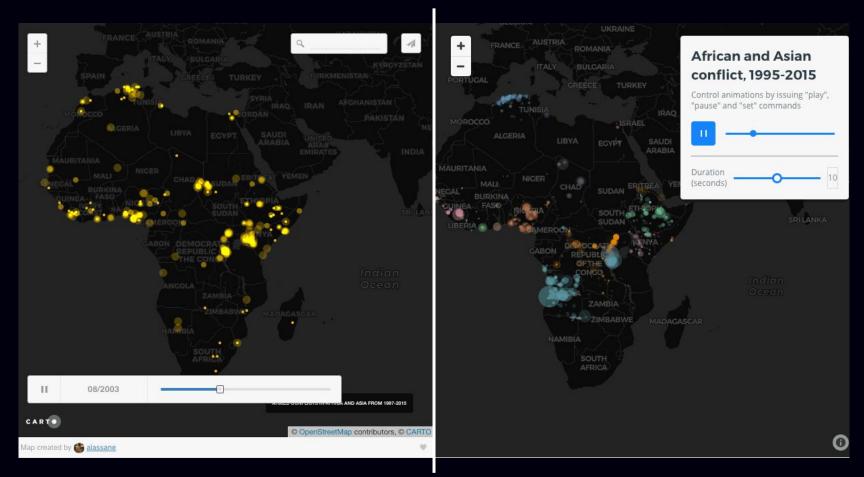
> Data tiles (MVT) rendered in your browser

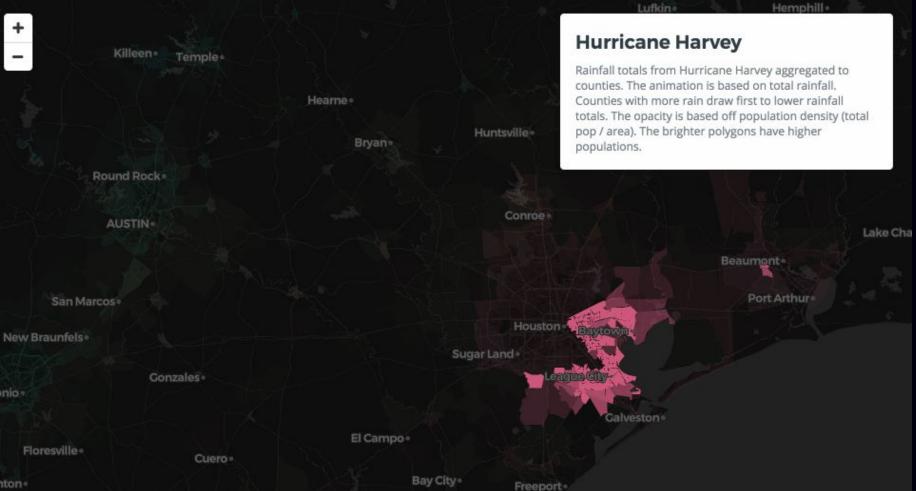
Database query returned straight to browser as MVT format data tile, viz and styling happens on your GPU

The Power of CARTO VL:

→ Things just happen faster

- Smooth, fractional zooms
- Quicker transitions
- Faster load and render times thanks to Smart Aggregation


→ Direct access to the data layer


- Data-driven styling with functions and math on data attributes
- Define styling variables and use them in your UI
- Summarize data at the Viewport or Global levels

New Animation and Interactivity Possibilities

Torque

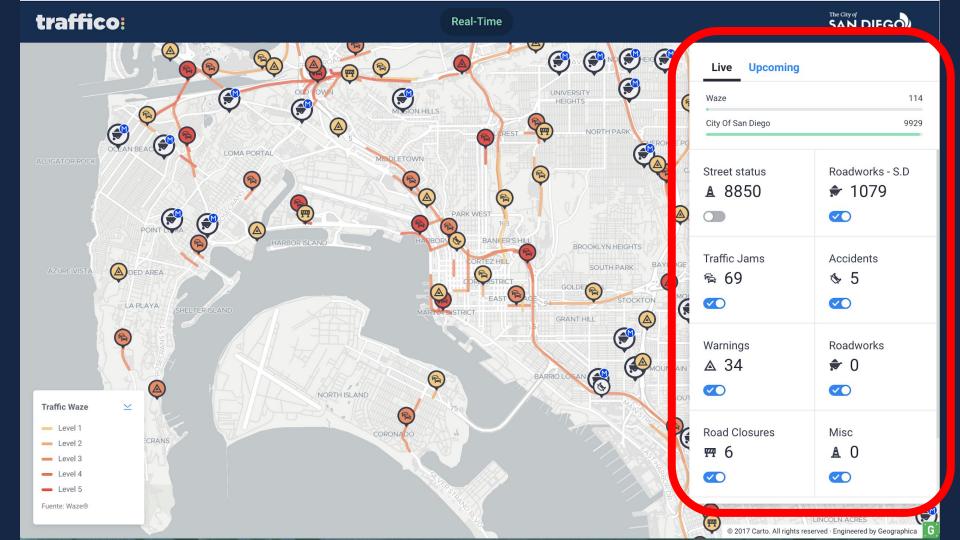
CARTO VL

santon®

CARTO.JS V4.1)

```
const viz = new carto.Viz(`
     marker-fill-opacity: 0.9;
     marker-line-color: #fff
     marker-line-width: 0;
     marker-line-opacity: 1;
     marker-placement: point;
     marker-type: ellipse;
     marker-width: 3;
     marker-fill: ramp([amount],
cartocolor(Emrld), jenks());
     [zoom = 4] {marker-width: 6;}
     [zoom = 5] {marker-width:12;}
     [zoom = 5] {marker-width:16;}
`);
```

CARTO VL (String and JS APIs)


```
const viz = new carto.Viz(`
     width: blend(1, sqrt($amount), linear(zoom(), 10, 14))
     color: ramp(linear($amount, 10, 1000), emrld)
     strokeWidth: 0
`);
const s = carto.expressions;
const viz = new carto.Viz({
      width: s.blend(3, s.sqrt(s.prop('amount')),
                     s.linear(s.zoom(), 10, 14)),
      color: s.ramp(s.linear(s.prop('amount'), 10, 1000),
                    s.palettes.EMRLD),
      strokeWidth: 0
```

```
});
```

VL is Fancy!

Airship is Easy!

Background

Embedding CARTO maps in custom apps with JS has always been integral to our developer platform

After years of working with customers using CARTO.js to make custom interfaces, we identified common UI components

Our award-winning design team took these learnings and created Airship to reduce the level of effort to make apps

Airship Mission

Airship is a library of layouts, basic patterns, templates, CSS classes, components, and widgets that is meant to make the development of custom location intelligence apps fast and efficient with CARTO.

Airship is...

Airship is fully responsive out of the box!

Airship is completely flexible for styles and colors!

Airship has built in functionality for widgets!

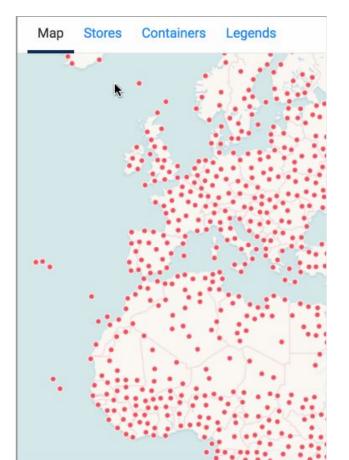
Airship is not..

Airship is not frontend framework dependent (Vanilla JS, React, Angular, Ember, Vue all work!)

Airship is not just HTML/CSS, it includes full web components and handles design and layout for you

Airship is not hard to install and use

Airship Layout


TOOLBAR

LEFT SIDEBAR

DENMARK UNITED KINGDOM BE MAP MAP PANELS -> BELGIUM UKKAIN AUSTRIA KAZAKHSTAN FRANCE ROMANIA ITALY BULGARIA KYRGYZSTAN PORTUGAL TURKMENISTAN GREECE TURKEY TUNISIA AFGHANISTAN IRAO IRAN MOROCCO ISRAEL PAKISTAN ALGERIA NEPAL LIBYA EGYPT SAUDI UNITED ARABIA ARAB CUBA INDIA EMIRATES MAURITANIA NIGER ERITREA YEMEN MALI ALA CHAD SENEGAL SUDAN BURKINA GUINEA FASO ETHIOPIA **NIGERIA** SOUTH PANAMA VENEZUELA SRI LANKA SUDAN LIBERIA CAMEROON SURINAME COLOMBIA KENYA DEMOCRATIC GABON ECUADOR REPUBLIC OFTHE CARTO COpenStreetMap contributors CONGO DEDI **MAP FOOTER**

RIGHT SIDEBAR

Airship Mobile Responsive Layout

Components

Components use <u>W3C Web Components</u> and Javascript functions to work and pass data back through CARTO.js/VL

Designed to work with CARTO VL Style Variables, or CARTO.js Dataviews and Filters

Category Widget

Business Volume	
Description	
Bars & Restaurants	1.0К
Fashion	900
Grocery	800
Health	400
Shopping mall	250
Transportation	1.0К
Leisure	760
All selected	

<body>

```
<as-category-widget

class="as-p--16"

heading="Business Volume"

description="Description"></as-category-widget>
```

<script>

```
const categoryWidget = document.querySelector('as-category-widget');
    categoryWidget.showClearButton = true;
    categoryWidget.categories = [
      { name: 'Bars & Restaurants', value: 1000 },
       name: 'Fashion', value: 900 },
      { name: 'Grocery', value: 800 },
      { name: 'Health', value: 400 },
      { name: 'Shopping mall', value: 250 },
      { name: 'Transportation', value: 1000 },
      { name: 'Leisure', value: 760 }
  </script>
</body>
```

Styles

Styles are either simple HTML elements with styling types or web components.

I'm a regular button

<button class="as-btn"> I'm a regular button</button>

I'm a regular button

<button class="as-btn as-btn--primary"> I'm a regular button</button>

```
Default
With placeholder
With value
Hello there
>
  <span class="as-caption">Default</span>
  <input class="as-input" type="text">
>
  <span class="as-caption">With placeholder</span>
  <input class="as-input" type="text" placeholder="Hello there">
>
  <span class="as-caption">With value</span>
  <input class="as-input" type="text" value="Hello there">
```


Tooltip top

Success badge Error badge Primary badge Secondary badge

Success badge
Error badge
Primary badge
Secondary badge

Resources and Links!

bit.ly/ireg-carto-libraries

Developer Center Docs

https://carto.com/developers

CARTO VL Training-thru-Examples

https://github.com/CartoDB/carto-vl-training

CARTO Airship Training-thru-Examples

https://github.com/cartodb/airship-training

Easy DIY via Glitch!

https://glitch.com/@andrewbt/carto-airship-traini ngs

One more thing...

https://cartodb.github.io/shuttle/

Configure your application, choose your colors, layout, and the CA

CONFIGURE

Thank You!

athompson@CARTO.COM

