
ZIP Code to Legislative District Matching

via Cicero

Aaron Dennis • adennis@azavea.com

Aaron Dennis • adennis@azavea.com

:!\ azavea ~ c1cero

What is Cicero?

Aaron Dennis • adennis@azavea.com

Cicero is a database of elected
officials and legislative districts
spanning nine countries.

www.cicerodata.com

History of Cicero

Aaron Dennis • adennis@azavea.com

● Started with local coverage in Philadelphia

● Greater Philadelphia Cultural Alliance

○ wanted an advocacy campaign because funding was

going to be cut

○ needed to match members to their representatives

Aaron Dennis • adennis@azavea.com

:!\ azavea ~ c1cero

ifhe Cicero AP.I matches your addresses to thei~ legislative

districts and gives you back a wealth of elected official contact . . .

District Match
A seamless way to match your addresses to districts and elected

officials.

Aaron Dennis • adennis@azavea.com

live.cicerodata.com

Challenge: ZIP Code to District matching

Aaron Dennis • adennis@azavea.com

Challenge: ZIP Code to District matching

Aaron Dennis • adennis@azavea.com

Why use ZIP Codes?

Aaron Dennis • adennis@azavea.com

● widely adopted

● commonly understood

● don't require personally identifiable information (like street addresses)

● Census Bureau provides a ZCTA (ZIP Code Tabulation Area) dataset

ZIP Codes don't really exist

Aaron Dennis • adennis@azavea.com

● TRUE → ZIP Codes are not actually areas/polygons

● TRUE → ZIP Codes are collections of postal delivery routes and points

● FALSE → ZIP Codes are useless for defining the boundaries of a region

Challenge: ZIP Code to District matching

Aaron Dennis • adennis@azavea.com

Conventional method:

matched with center point of ZIP Code

Our method:

matched to most likely district based on population distribution

Population based matching:

Aaron Dennis • adennis@azavea.com

Input Data:
1. ZIP Code Tabulation Areas (US Census)
2. Legislative District Boundaries (Cicero)
3. Census Block Population Counts

Aaron Dennis • adennis@azavea.com

Technical Details:

Aaron Dennis • adennis@azavea.com

Docker Containers

Ubuntu PostGIS

● GDAL
● Postgres Client
● Python
● YAML
● Tippecanoe & MBUtil

● SQL
● spatial functions

Output of automated workflow:

Aaron Dennis • adennis@azavea.com

Aaron Dennis • adennis@azavea.com

"19123": {
 "sldl": [
 {
 "id": "ocd-division/country:us/state:pa/sldl:181",
 "pct": 0.638
 },
 {
 "id": "ocd-division/country:us/state:pa/sldl:175",
 "pct": 0.362
 }
],
 ...
 }

Example output JSON:
Open Civic Data
Identifiers!
(OCD ID)

Accuracy of centroid vs. population:

Aaron Dennis • adennis@azavea.com

Regional Accuracy:

Aaron Dennis • adennis@azavea.com

Aaron Dennis • adennis@azavea.com

:!\ azavea ~ c1cero

How accurate is ZIP

Code to Legislative

District matching?

Product: [Basic : J

Level of Government:

[National Lower Legislative District : J

8896 accurate

12% inaccurate

Circle size represen ts number of people.

Aaron Dennis • adennis@azavea.com

:!\ azavea ~ c1cero

How accurate is ZIP

Code to Legislative

District matching?

Product: [Premium : J

Level of Government:

[National Lower Legislative District : J

90% accurate

10% inaccurate

Circle size represen ts number of people.

Aaron Dennis • adennis@azavea.com

:!\ azavea ~ c1cero

How accurate is ZIP

Code to Legislative

District matching?

Product: [Basic : J

Level of Government:

[State pper Legislative District : J

79% accurate

21 % inaccurate

Circle size represents number of people.

Aaron Dennis • adennis@azavea.com

:!\ azavea ~ c1cero

How accurate is ZIP

Code to Legislative

District matching?

Product: [Premium : J

Level of Government:

[State pper Legislative District : J

84 % accurate

16% inaccurate

Circle size represents number of people.

Aaron Dennis • adennis@azavea.com

:!\ azavea ~ c1cero

How accurate is ZIP

Code to Legislative

District matching?

Product: [Basic : J

Level of Government:

[State Lower Legislative District : J

6696 accurate

34 % inaccurate

Circle size represen ts number of people.

Aaron Dennis • adennis@azavea.com

:!\ azavea ~ c1cero

How accurate is ZIP

Code to Legislative

District matching?

Product: [Premium : J

Level of Government:

[State Lower Legislative District

72% accurate

28% inaccurate

:]

Circle size represen ts number of people.

Aaron Dennis • adennis@azavea.com

cicerodata.com

@CiceroAPI

github.com/cicero-data

Deriving Value from Aerial Imagery

Improving Deep Learning Workflows

With Open Source Software

Yoni Nachmany • ynachmany@azavea.com 1

2

Source:
DailyOverview

https://www.wired.com/2016/10/explore-earth-as-only-seen-by-satellites/

How to derive value from aerial imagery?

Yoni Nachmany • ynachmany@azavea.com 3

Source: https://www.azavea.com/blog/2017/05/30/deep-learning-on-aerial-imagery/

https://www.azavea.com/blog/2017/05/30/deep-learning-on-aerial-imagery/

How to help governments and local

stakeholders respond to deforestation?

Yoni Nachmany • ynachmany@azavea.com 4
Source: https://www.kaggle.com/c/planet-understanding-the-amazon-from-space

https://www.kaggle.com/c/planet-understanding-the-amazon-from-space

Raster Vision: 23rd of 938, 93.4% F-Score

Yoni Nachmany • ynachmany@azavea.com 5

Source: https://github.com/azavea/raster-vision

https://github.com/azavea/raster-vision

1. Result demonstration: Kaggle BE

Yoni Nachmany • ynachmany@azavea.com 6
Source: Jeff Frankl

https://github.com/azavea/planet-amazon-ai-demo/tree/ys/initial-setup/app-backend

2. Capacity building: GeoTensorFlow

Yoni Nachmany • ynachmany@azavea.com 7

Source: https://github.com/yoninachmany/geotensorflow

https://github.com/yoninachmany/geotensorflow
https://github.com/yoninachmany/geotensorflow

2. Capacity building: GeoTensorFlow

Yoni Nachmany • ynachmany@azavea.com 8

Source: https://www.tensorflow.org/api_docs/java/reference/org/tensorflow/package-summary

https://github.com/azavea/geotensorflow
https://www.tensorflow.org/api_docs/java/reference/org/tensorflow/package-summary

2. Capacity building: GeoTensorFlow

Yoni Nachmany • ynachmany@azavea.com 9

Source: https://github.com/azavea/geotensorflow/issues

https://github.com/azavea/geotensorflow
https://github.com/azavea/geotensorflow/issues

3. Dataset exploring: SpaceNet Notebook

Yoni Nachmany • ynachmany@azavea.com 10

Source: Draft of “Exploring SpaceNet Data with GeoPySpark”

Source: http://blog.digitalglobe.com/developers/the-spacenet-challenge-help-us-to-harness-machine-learning-to-make-maps-more-current-and-complete/

https://github.com/geodocker/geodocker-jupyter-geopyspark/pull/27
http://blog.digitalglobe.com/developers/the-spacenet-challenge-help-us-to-harness-machine-learning-to-make-maps-more-current-and-complete/

3. Dataset exploring: SpaceNet Notebook

Yoni Nachmany • ynachmany@azavea.com 11

Source: Draft of “Exploring SpaceNet Data with GeoPySpark”

https://github.com/geodocker/geodocker-jupyter-geopyspark/pull/27

3. Dataset exploring: SpaceNet Notebook

Yoni Nachmany • ynachmany@azavea.com 12

Source: https://github.com/geodocker/geodocker-jupyter-geopyspark/pull/27

https://github.com/geodocker/geodocker-jupyter-geopyspark/pull/27
https://github.com/geodocker/geodocker-jupyter-geopyspark/pull/27

Yoni Nachmany • ynachmany@azavea.com 13

Think Aerial and
Open Source
This Overview captures rowing shells on the
Schuylkill River, which runs through the center of
the city. (Source: Daily Overview)

Thanks!

https://www.instagram.com/p/BNunIRTAcDJ/

tnation@azavea.com

Git-ting Started With GitHub
Desktop

This training and the images used therein
are from https://git-scm.com/book/en/v2/

under the Creative Commons License

Acknowledgements

https://git-scm.com/book/en/v2/
https://creativecommons.org/licenses/by-nc-sa/3.0/

● GitHub Collaboration tools
○ Issues
○ Milestones
○ Pull Requests
○ Git Flow

● VCS & Git
○ VCS overview
○ What is Git?

● Setting up GitHub & GitHub
Destktop

● GitHub Pages
● Git Concepts

○ Structure of a Git project
○ Making Changes to a File
○ Branching/Forking

Overview

● This Presentation is light on actual git commands, but git-scm.com provides a
comprehensive cheat sheet here.

● Repository: Data structure containing a history of file changes. A project
contains a git repository, but project and repository are often used
interchangeably.

● Pull: Retrieve changes from a remote repository, and merge them into the
local one.

● Push: Update the remote server’s version history with your local changes
● Commit: Record changes to a repository

Commonly Used Git Terms

https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf

Commonly Used Git Terms (cont’d)

● Branch: A copy of the revision history, stored in the repository. Generally
used for short term feature development, and merged back into the main
tree.

● Fork: A copy of revision history, stored in another repository. Generally
used to track changes that will not be merged back into the main
repository.

● Pull Request/Merge Request/Changelist: the nomenclature varies by
organization, but these are requests to merge changes into the main
repository.

Version Control
Systems (VCS)

● “Version control is a system that
records changes to a file or set
of files over time so that you
can recall specific versions
later” (git-scm.com)

● Particularly useful to engineers
because it allows us to do quick
rollouts/rollbacks, and makes it
easy to pinpoint the source of
software bugs.

● VCS types: Localized,
Centralized, and Distributed

● Git is a distributed VCS.

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

● From https://git-scm.com : “Git is a free and open source distributed
version control system designed to handle everything from small to very
large projects with speed and efficiency.”

● Created in 2005, after the VCS used by Linux Kernel developers revoked
their free-use license.

● Used by Facebook, Twitter, Google

What is Git?

https://git-scm.com

What is GitHub?

● GitHub is a project collaboration service that hosts git repositories and
handles other aspects of project management.

○ Works with the Git CLI; all you need is an account.

● The GitHub API is a useful tool for organizing projects and team
collaboration.

○ Azavea operations collaborates with all teams in the organization. GitHub issues allows us
to keep track of tasks across multiple projects.

● Graphical User Interfaces (GUIs) make it easy to interact with Git without remembering any
commands.

● Visualizing branches makes it easier to do git operations.
● GitHub desktop is developed by GitHub Engineering, and enables users to do the basic Git

commands: branching, pulling, pushing, and committing.
○ This will be enough for most Git/GitHub users, but it appears that some of the more

complex commands are missing
● A similar tool, SourceTree by Atlassian, has a more comprehensive set of options available

(including Git Flow integration) for advanced users.

GitHub Desktop (and other Git GUI tools)

- Host your website on a GitHub Repository
- Great for blogs, and marketing sites
- More info at https://pages.github.com/

GitHub Pages

https://pages.github.com/

Exercise: Setting Up GitHub Desktop

● Create a GitHub account at https://github.com/join
● Download Git Desktop from https://git-scm.com/download/guis/

○ Sign in and configure your Name and Email address.

https://github.com/join
https://git-scm.com/download/guis/

Structure of a Git Project

● Git directory (repository): contains the revision database and metadata.
○ Previous commits to files are stored here.

● Working tree: A snapshot of one version of the project, stored on disk.
Usually, but not necessarily, the latest revision.

○ Created from the changes stored in the Git version database.
○ Ephemeral: changes made in the working tree are not tracked.

● Staging area: a section of the git repo that contains information about files
that have been modified, but not committed.

● Clone the project you’d like to make edits to
○ git clone <repository-uri>

● Checkout a version of the project into the working tree
○ git checkout -b test-branch

● Make the necessary edits, then add them to the Staging area
○ This is VERY important: if you don’t add your changes to the staging

area, they won’t be saved to the version database.
○ git add edited-file.txt

Making Changes to a File

Making Changes to a File (cont’d)

● Review your changes; once you’re satisfied, commit them to save your
revisions to the database.
○ Inspect changes with git diff
○ Save your revisions with git commit

● Push your changes to the remote
○ git push origin test-branch

How Git Views Version History

Checkins Over Time

' ' ' '
File A Al ' Al \ A2 ' A2 •

' ' ' ' • ' • ' , ' , . .
______ J_ _____ -----r---- -----r----

----- -----
' ' • '

File B ' B ' ' B • Bl 62 ' ' ' ' ' ' ' '
' ' ' ' ------r----· ---·--r--·-· _____ L ____

' File c Cl C2 ' C2 ' C3 ' •
' ' .. ___________ ,

● Branching creates a copy of
the main revision history that
runs parallel to the main history.
You can make changes to this
copy of the repo without
impacting the main line of
development.

● Forking a repository does the
same thing as branching, but it
grants full ownership to the user
that creates the fork. Forking is
useful for creating an idea
based on another project, or
contributing to a project where
you don’t have Push access.

● Allows people to experiment
with different versions of the
source code at the same time.

Making Major
Changes to a
Project

● Merge conflicts happens when
you try to merge your branch into
the main branch, but they’re too
far out of sync.

○ Your branch contains
changes to a file that’s
deleted

○ Different changes to the
same file

● To limit the amount of conflicts,
git pull changes into the main
branch, then use git rebase to add
your commits to the top of the
newly-updated main branch.

● Sometimes, merge conflicts have
to be fixed manually.

(Not) N’Sync:
Branching/Forking
Caveats

● Download a zip file of https://github.com/tnation14/sample-github-pages-template
● Create a repository in GitHub Desktop: https://github.com/<your username>/<your

username>.github.io (i.e. https://github.com/tnation14/tnation14.github.io)
○ Take note of the local folder where the repo will live.

● Create a new branch:
○ Click Current Branch > New
○ Name the branch master

● Copy the contents of the zip file into your repository.
● Edit index.html to say “Hello, <your name>”.
● Open index.html in a web browser
● Add the new files to the staging area, commit changes, then push them to a remote branch
● Merge your changes to the master branch.

Git Workflow Exercise: Creating a GitHub
Page

https://github.com/
https://github.com/tnation14/tnation14.github.io

GitHub Collaboration Tools

- Issues: GitHub’s way of tracking bugs
- Milestones: Grouping issues by deadline. Also helps break issues down

into more manageable chunks
- Pull requests/Merge Requests (PRs/MRs): a request to merge changes

from a branch or fork into the main branch.

● Useful tool for iterative development
○ Plan, Build, Test, Deploy, Create Issues

● Issue comments are great places for planning between multiple
team-members

● Break down complex tasks into more manageable steps
● Good to reference as context for a Pull Request
● Nice feature of GitHub API is that you can link a PR to an issue, so that

when you merge the PR the issue is closed as well.
● Example: GeoTrellis Issue and Pull Request
● https://github.com/user/repo/issues

GitHub Issues: Because There’s No Such Thing
as Perfect Software

https://github.com/geotrellis/geotrellis-site/issues/63
https://github.com/geotrellis/geotrellis-site/pull/68

Milestones

● Organizes disparate issues into a single deliverable for time tracking
purposes.

○ Multiple kinds of customer issues can be grouped under a single release milestone

● Set timelines for features
● Used in conjunction with Issues, Milestones are a great way to measure

how your team’s expected efficiency matches up with its actual efficiency.
● https://github.com/user/repo/milestones

Pull Requests
● Asking permission to merge my branch revision history into the main

branch
● Place to peer-review code for correctness and readability.
● PR Etiquette

○ Give your PR a thorough self-review before submitting it to someone else.
■ https://github.com/user/repo/compare/base-branch...your-branch

○ Describe of the issue you’re trying to fix (or link back to an issue)
○ Include good testing instructions
○ When adding changes, avoid rebasing. This can cause merge conflicts for the person

testing your commit locally.
○ Before merging, do one final rebase to put your work into logical commit steps

● https://github.com/user/repo/pulls

● Branching pattern tor teams that
do rapid iterative development

● Active development happens on
“feature” branches

● Completed work is merged from
the Feature branch into develop.

● Release branches contain work
that’s ready to be deployed

● Keeps in-progress work separate
in progress work from completed
work, and allows multiple teams
to work on projects without
getting in each other's’ way.

Git Flow

	Cicero_Azavea_IREG
	Yoni Nachmany - Azavea Open Source Fellowship (1)
	GitHub 101_ Git-ting Started with Git and GitHub

