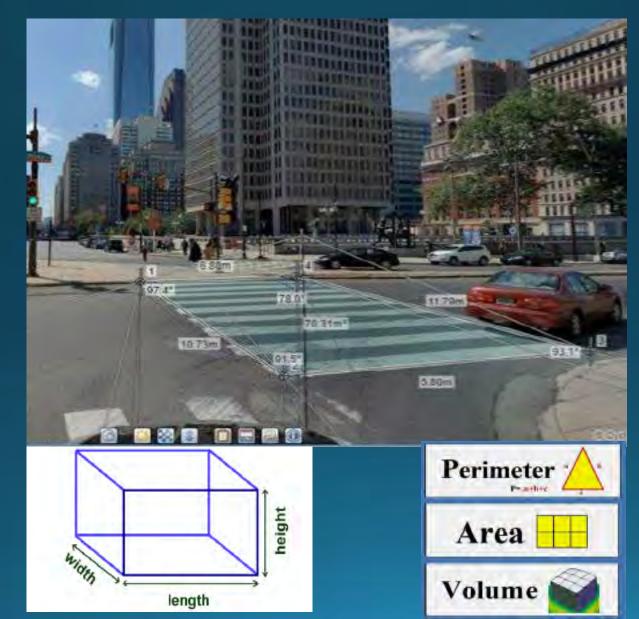
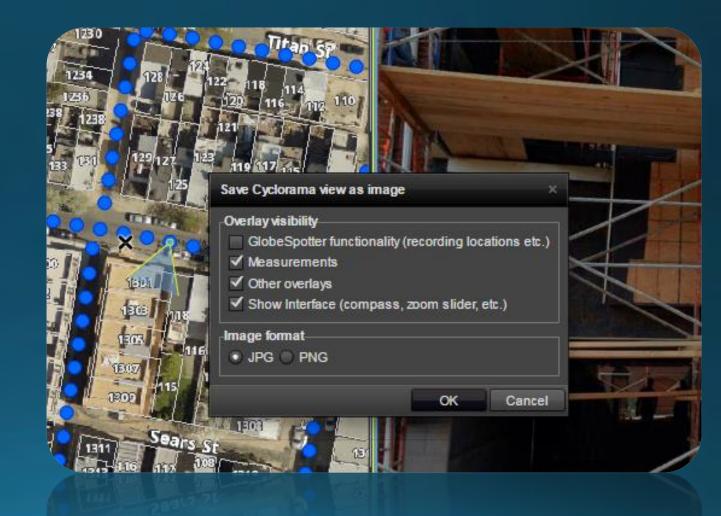
Custom Capture Street View Imagery

City of Philadelphia Office of Innovation and Technology March 8, 2017

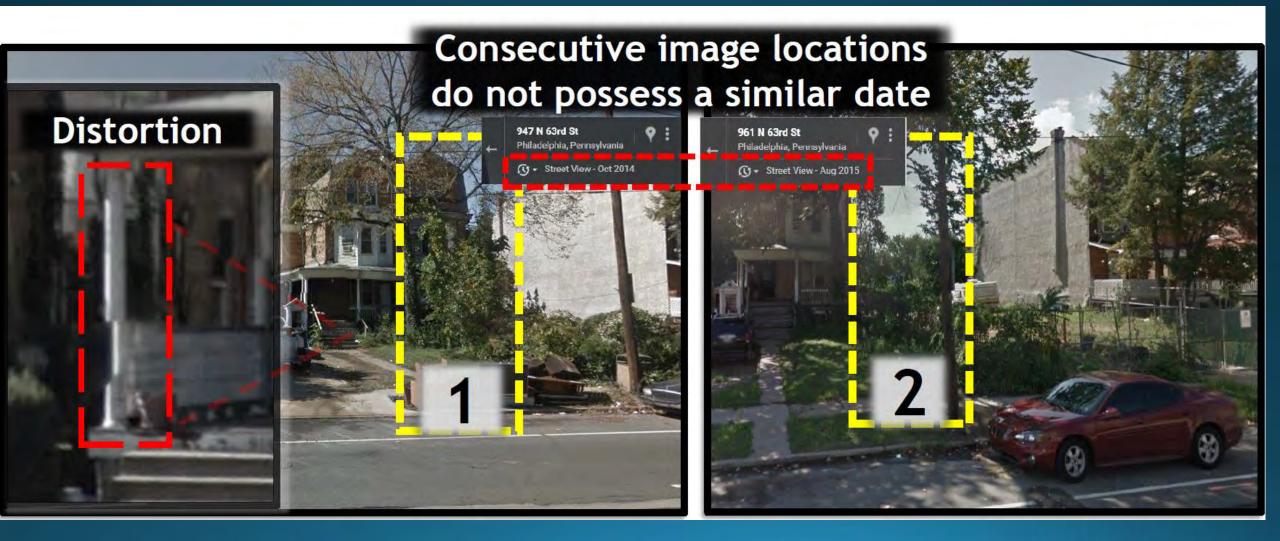

- Cyclomedia Technology, Inc. (Berkeley, CA). Esri business partner.
- 1-year pilot in 2015 including 2,575 miles imagery.
- Accessed via:
 - Globespotter browser-based web app
 - Streetsmart add-on for both ArcGIS Desktop and ArcGIS Online
- 2016 City purchased a full year of service w/ PGW, PHA, PIDC, PPA and UPenn Facilities.

Why Use the Cyclomedia Solution?

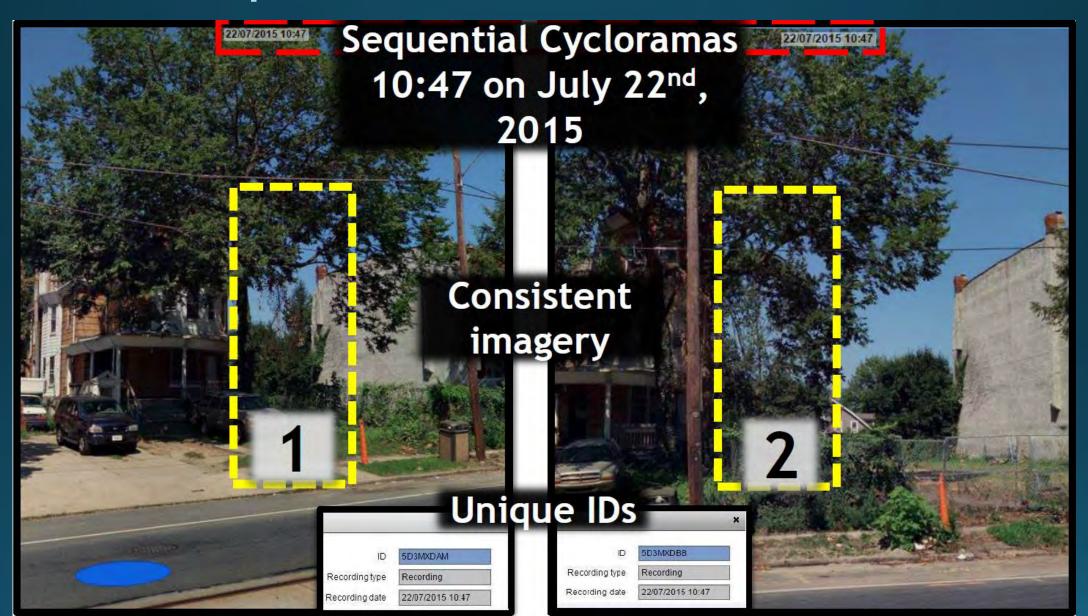
- High definition, 360° seamless photography
- No blurring of house addresses
- Each image is date and time stamped + Unique ID
- No downgrade in quality for local/residential streets
- Measure tools height, length, area


• 100% integration with City's GIS (Esri) platform – desktop + web

Accurate Measurements +/- 10 cm



Save and Share Imagery


- Unique image ID and URL
- Save as PDF report or to JPG
- Build Play List of locations for demonstrations and site reviews
- Save measures and drawings in images/reports

Google Street view is useful, but...

Custom Capture = Confident Date/Time

By the Numbers

Agency	Globespotter Accounts	Staff Trained On-site or Webinar* on Globespotter
PGW	139	21
PHA	10	2
PIDC	2	1
PPA	39	18
UPenn Real Estate	22	4
City total	545	103

Fastest adoption rate of a new technology at City government outside MS Office and Internet.

*Webinar counts are under-reported

City Use Cases

- Parks and Recreation 111,000 street trees inventoried.
- Fire building height measurement, asset inventory, condition assessment.
- Streets bridge height measurement, infrastructure checks.
- Licenses + Inspections pre-inspection planning and prioritization, vacant building verification, court case documentation, building height measurement.
- Law, DA, Administrative Review, Risk Management, Property Assessment, Planning agencies address verification, condition assessment.
- Planning + Water parking inventory, ROW asset measurements for \$ estimates.

New Captures and Funding

- City is budgeting for a new capture in 2017.
- Annual captures each year after proposed for operating budget. Strong support by departments (Licenses + Inspections).
- Continue and expand upon partnership collaboration.
- Will not be made publicly accessible internal use only.

Demo

Contact Information

 Mark Wheeler, Geographic Information Officer mark.wheeler@phila.gov

 Brian Ivey, OIT GIS Manager brian.ivey@phila.gov

Sharing is Caring

A Study of Citi Bike's Discounted Annual Membership Program for New York City Housing Authority Residents

> Thom Stead, Transportation Planner, Delaware Valley Regional Planning Commission

Project Components

Demographic Analysis

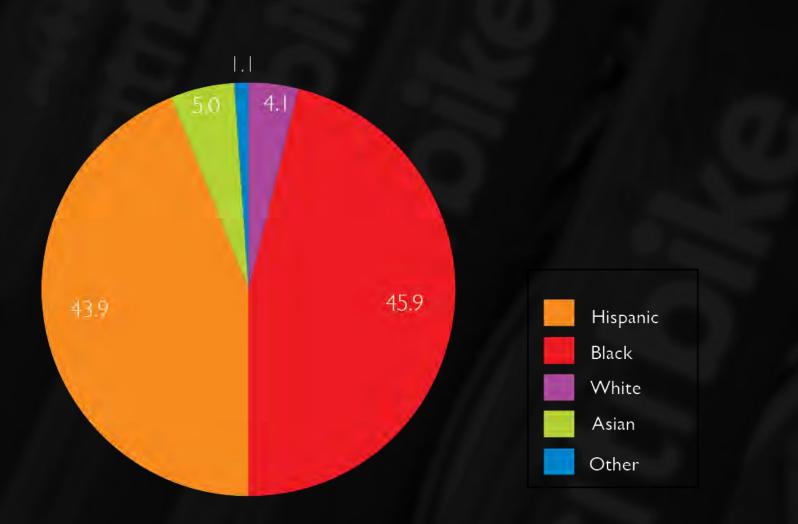
NYCHA Resident Survey:

- Opinions
- Experiences
- Knowledge
- Obstacles
- Improvements

Who lives in NYCHA?

NYCHA's official population is about **403,000**

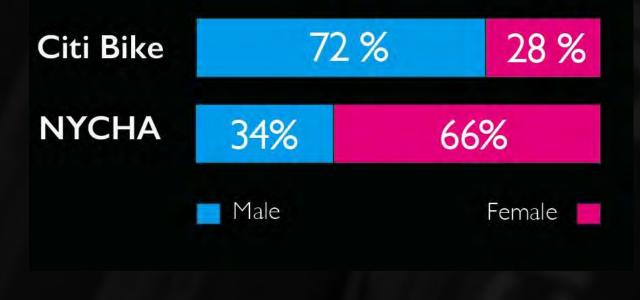
Experts think there are around **200,000** people living "off lease" in NYCHA, bringing the total population closer to **600,000**


Only people on NYCHA leases qualify for Citi Bike's annual membership discount*

Roughly **307,000** NYCHA residents are over 16 years old, the minimum requirement to use Citi Bike

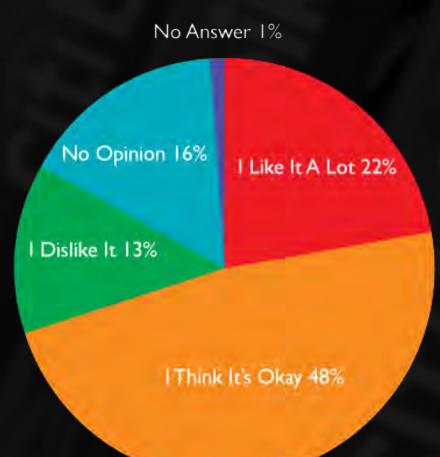
48,000 residents live ¼ mile walk of Citi Bike

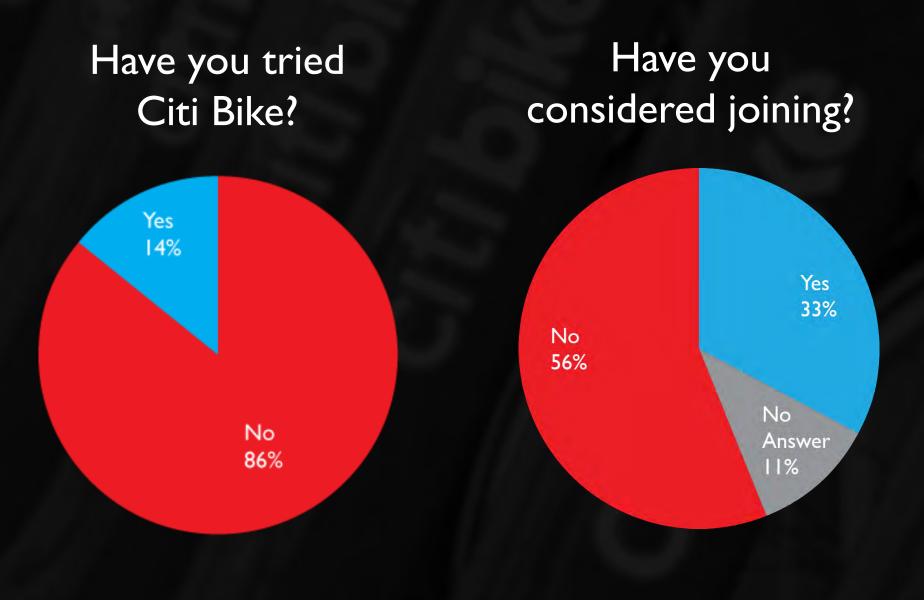
About 1,000 individuals signed up for a discounted membership in the first year of the program


Race + Ethnicity

Source: Special Tabulation of Resident Characteristics 2013

Gender


Citi Bike Members vs. Eligible NYCHA Residents


Survey Findings

Opinions

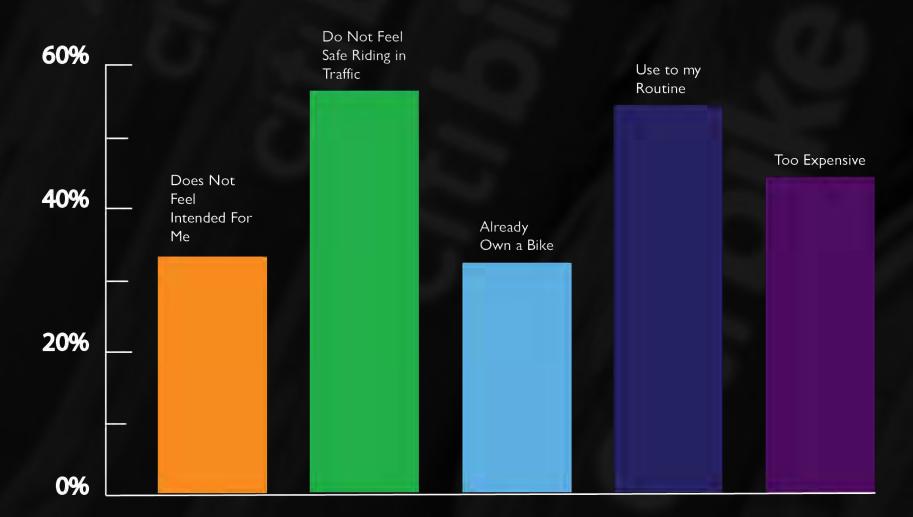
What's your opinion of the Citi Bike Program?



Experiences

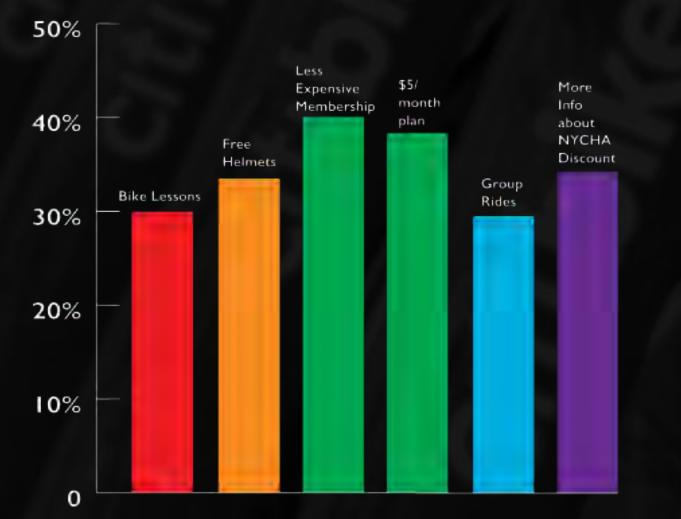
What did you use Citi Bike for?

Knowledge


Did you know there was a discount for NYCHA residents?

Yes 20%

No 80%


Obstacles

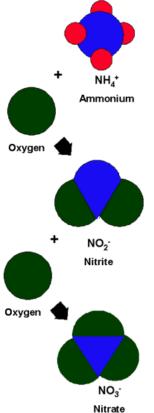
Why Have You Not Used Citi Bike?

Improvements

What Would It Take to Get You on a Citi Bike?

Take Aways and Recommendations

- Create accessible / relatable advertisements and program information.
- Allow for payment in installments
- Provide cycling groups and lessons
- Work with communities to develop equity measures that address their needs
- Employ or work with community champions
- Create a NYCHA working group to understand what is and is not working


Ammonia Toxicity Calculator Interactive Web Application using R & Shiny 3/8/2017

PHILADELPHIA WATER DEPARTMENT

- **1.** Background
- 2. Calculation spreadsheet
- 3. PWD Shiny Web Application

Background – Ammonia in Water **NBOD Nutrient**

Ρ (other nutrients)

Algae Bloom

Toxicant

(un-ionized NH₃)

Aquatic Life Impacts

PHILADELPHIA WATER DEPARTMENT AMMONIA TOXICITY CALCULATOR

Background

USEPA Ammonia Water Quality Criteria Update

- Toxicity is function of pH and temperature
- ↑pH | ↑temperature = ↑toxicity

Problem - pH of mixture of two flows cannot be solved as simple average (mass balance)

- Carbonate buffering system
- Inorganic carbon equilibrium chemistry

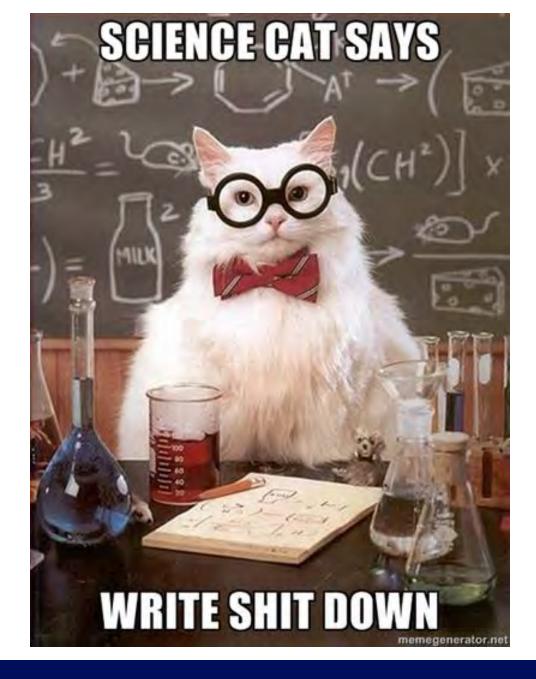
Problem Statement

Stakeholders need a commonly understood method for evaluating ammonia criteria under proposed implementation policy conditions (*i.e.*, varying temperature, pH and alkalinity)

DNREC pH Calculation Spreadsheet

Calculations Developed by Rick Greene (DNREC) for 2006 contaminated groundwater study Inputs (each flow):

- Temperature
- Alkalinity
- pH
- Proportion of total flow (dilution)


pH solved iteratively- 4th order polynomial in [H+]

E	י⊘ • פ• [Copy of DelChap	el pH Proble	m.xls [Compat	ibility Mod	e] - Excel			Jason Cruz	b –		×
Fi	le Home	Insert Page Layout	Formu	ulas Data Rev	riew View ♀	Tell me wha	at you want to o	do						R₁ si	hare
Pas	Ari	al • 12 • A A I <u>U</u> • H • <u>A</u> • <u>A</u>			e Wrap Text Merge & Center →	General \$ → %	▼ 0.0 0.0 0.0 0.0	Condition Formatting	nal Formatas C g * Table * Sty	ell Insert Delete	Format	∑ AutoSum ↓ Fill + Clear +</td <td>Sort & Filter * S</td> <td></td> <td></td>	Sort & Filter * S		
Clipboard 🖙 Font 🖙 Alignment 🖓 Number 🖓							Styles	Cells			Editing		~		
A1	-	: X 🗸 🖍 Pre	ediction	n of mixing zone pH	1										~
	А	В		С	D	Е		F	G	н	1	J	К	L	
1		on of mixing zone pl	4	0					•						
		sheet "Mixing" from		reene. comm	ents remove	d									
	data entry	j													
		organic Carbon Chemistr	ry				Ambie	nt Recei	ving Water In	organic Carbon	Chemis	stry			
5	pH =		9.8	S.U.			pH =			S.U.					
	[H ⁺] =	1.5		moles/L			[H ⁺] =		1.26E-07						
7	Alk =			mg/ L as CaCO ₃			Alk =			mg/ L as CaCO₃					
_	Alk =			meq/L			Alk =			meq/L					
	Alk =	0.0	00846				Alk =		0.000846						
10			20	Celsius			T =		25	Celsius					
11				Fahrenheit			T =			Fahrenheit					
12		2		Kelvin			T =		298.15 6.35						
	рК ₁ =		6.38				pK ₁ =								
	pK ₂ =		10.38				pK ₂ =		10.33						
	pK _w =		14.16				pK _w =		13.99						
	K ₁ =		5E-07				K ₁ =		4.46E-07						
	K ₂ =		0E-11				K ₂ =		4.68E-11						
	K _w =		5E-15				K _w =		1.01E-14						
	F ₀ =		2E-04				F ₀ =		2.20E-01						
	F ₁ =		0E-01				F ₁ =		7.79E-01						
	F ₂ =	2.0	9E-01				F ₂ =		2.90E-04						-+
	Check =		1.0				Check	-	1.0						
	C _T =	0.0	6.64E-04 0.66				С _т =		1.08E-03 mole/L						
	C _T =					C _T =		1.08 mM/L 1.08 mM/L 2.39E-04 mole/							-+
	[H ₂ CO ₃ [•]] =		2.00E-07			-									
	26 [HCO ₃] = 5.25E-04 mole/L						[HCO3	-	8.45E-04						
	[CO ₃ ²⁻] =		1.39E-04 mole/L [CO ₃ ²⁻] =						3.14E-07						
28	Check =	6.6	4E-04	mole/L			Check		1.08E-03						
	•	Summary Mixing_copy	Atm	ios Exchang & R_P	Time Variable So	oln pH	Chart1 p⊢	I Chart2	References	Chapra Ex. 39	\oplus	•			Þ
Read	iy													+ :	110%

Spreadsheet Shortcomings

Seven inputs, more than 30 intermediate unit conversions, constants and calculations Individual calculations are simple but keeping track of cells, versions of spreadsheet for different scenarios is cumbersome

Excel is "stateful", not very reproducible making it hard to share and validate data

PHILADELPHIA WATER DEPARTMENT AMMONIA TOXICITY CALCULATOR

PWD Shiny Web Application

Spreadsheet calculations re-written in R Shiny Web Application Framework (RStudio) used to share R code interactively on the web No HTML, Javascript or CSS knowledge needed Reactivity - functions change output on-the-fly based on changes to inputs

Background

USEPA Ammonia Water Quality Criteria Update

- Toxicity is function of pH and temperature
- ↑pH | ↑temperature = ↑toxicity

Problem - pH of mixture of two flows cannot be solved as simple average (mass balance)

- Carbonate buffering system
- Inorganic carbon equilibrium chemistry

PWD Shiny Web Application

Draft version of Shiny app shared here: http://104.236.74.130/shiny/ammonia/ Stack: Digital Ocean – VM host OS – Ubuntu 16.04LTS Web Server – NGINX **Applications – R, Shiny Server Open** Source

References

- <u>http://deanattali.com/2015/05/09/setup-rstudio-shiny-server-digital-ocean/</u>
- R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>
- USEPA 2013 Freshwater Ammonia Toxicity Criteria
- Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson (2017). Shiny: Web Application Framework for R. R package version 1.0.0. <u>https://CRAN.R-</u> project.org/package=shiny
- pH calculation was based on a spreadsheet created by Rick Greene (DNREC) for solving the pH of two flows.

Assessing Performance of Philadelphia's GSI

gSIM.db: A shiny-based R analysis tool

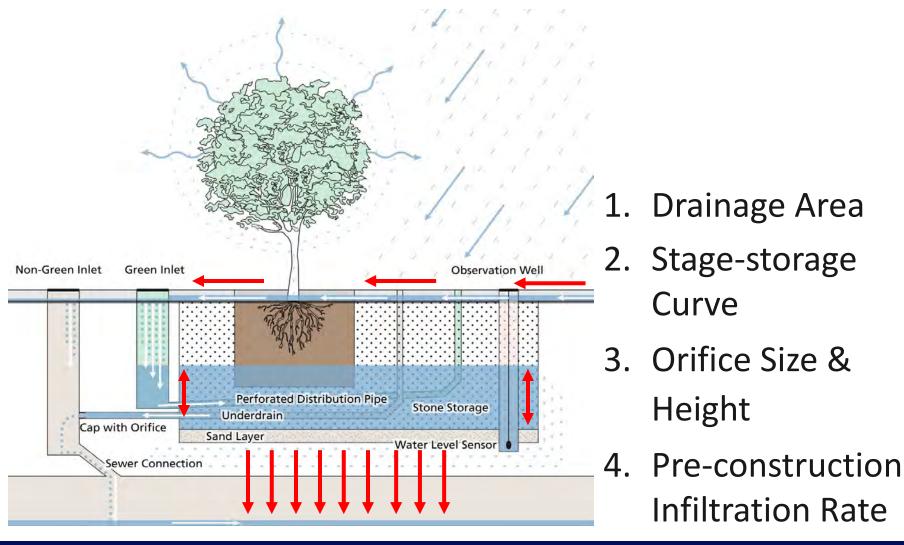
3/8/2017

PHILADELPHIA WATER DEPARTMENT

Overview

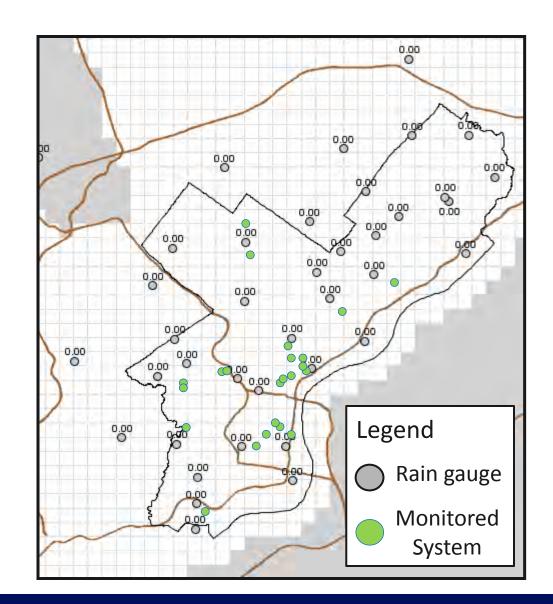

- **1.** Data Collection
- **2.** Analysis Methods
- **3.** Analysis Tools
- 4. gSIM.db Tool
- **5.** Results

	2011 to 2015 (4 years)	Sep 2016 to Jan 2017 (5 months)
Projects	28	56
Systems	48	131
Sensors	78	157



Typical Tree Trench: cross section

Collecting Water Level Data



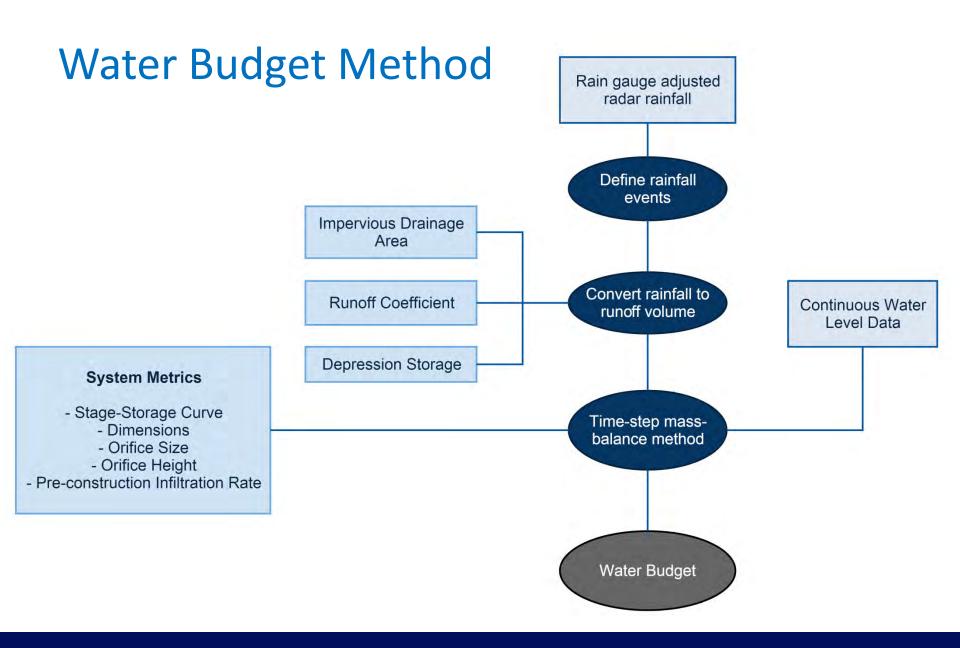
PHILADELPHIA WATER | DATA COLLECTION

Rainfall

Rain gauge adjusted radar rainfall

- 1 km² grid radar rainfall from Vieux, Inc.
- 35 PWD rain gauges
- 15 minute interval

Snowfall


- NOAA monthly local climatological reports
- **PHL** airport

PHILADELPHIA, PA LOCAL CLIMATOLOGICAL DATA

PHILADELPHIA INTERNATIONAL AIRPORT (KPHL) Lat:39° 52'N Long: 75° 13'W Elev (Ground) 10 Feet NOAA, National Centers for Environmental Information Time Zone : EASTERN WBAN: 13739 ISSN#: 0198-4543

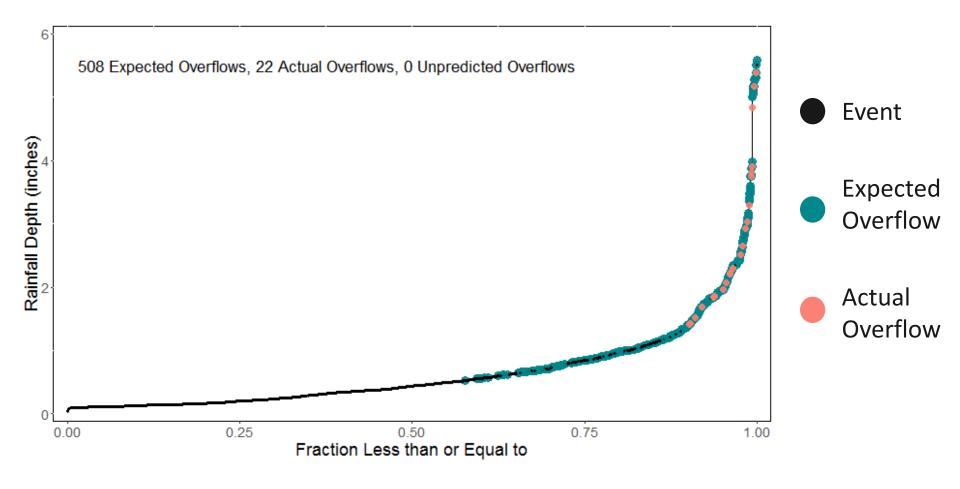
	Temperature °F Deg Days											PRECIP ON GN	TATION	PRESS	WIND SPEED = MPH DIR = TENS OF DECREES								
	-						BAS	E 65°		0700	1300	2400	2400	(LINCHE:			T		I MA	XIMU	M		
	N	Z		Ξ.,	8	85	10	0		LST	LST	LST	LST	H-	8 8	N	~	B	3-SE		2-MI	N	1
Date	MAXIMUM	MUMINIM	AVERAGE	DEP FROM NORMAL	AVERAGE DEW PT	AVERAGE WET BULB	HEATING	COOLING	WEATHER	DEPTH	WATER- EQUIV	FALL	WATER	AVERAGE	AVERAGE SEA LEVEL	RESULTANT	RES DIR	AVERAGE	SPEED	DIR	SPEED	DIR	Date
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
01	63	43	53	11	37	46	12	0	RA BR	0		0.0	0.03	29.66	29.73	14.1	29	14.7	39		29		01
02	51 52	40	46	5	28 30	38	19	0		0		0.0	0.00	29.93	29,98	15.4	27	15.9	35	29 29	28 23	28 30	02
04	48	41	45	4	26	37	20	o		ő		0.0	0.00	30.19	30.21	3.9	33	6.9			16	35	04
05	51	40	46	6	36	40	19	0	RA BR	0		0.0	0.13	30.01	30.05	5.3		9.2			17		05
06	46	37	42	2	34	39	23	0	RA PL BR	o		т	0.74	30.01	30.01	8.9					20		06
07	47	37	42	2	36	40	23	0	RA DZ BR	0		0.0	0.04	29.93	29.99	6.4	33				17		07
08	46	32 29	39 34	-1	23 16	33	26 31	0		0		0.0	0.00	29.99	30.02 30.24	10.7		11.8		28 29	23 24		08
10	38	26	32	-7	15	27	33	0	RA SN	o		0.0 T	0.00 T	30.41	30.43	9.5		10.2			22		10
11	35	26	31	-8	18	27	34	0	SN	0		т	т	30.44	30.45	1.9	17	4.9	19		13	20	11
12	50	35	43	5	36	40	22	0	RA BR	0		0.0	0.42	29.93	29.96	6.7	26	9.0	25	22	20	22	12 13
13	44	34	39	1	25	34	26	0		0		0.0	0.00	30.10	30.13	2.7					14	32	13
14 15	43 35	34 18	39 27	-10	22 3	33 19	26 38	0	SN BR	0 T		0.2	0.01	29.98 29.99	30.01 30.07	7.4		8.2			23 35*		14 15
16	26	16*	21*	-16	4	17	44	0		0		0.0	0.00	30.39	30.43	6.9					21		16
17	37	26	32	-5	29	31	33	0	RA FZRA SN PL FG+ FG BR	0		0.1	0.72	30.03	30.03	3.1					13		17
18	60	34	47	10	39	44	18	0	TS TSRA RA FG+ FG BR	0		0.0	0.02	29.93	30.03	7.5		14.4			33	31	18
19 20	34 34	25 20	30 27	-6	10 11	24 23	35 38	0		0		0.0	0.00	30.62 30.48	30.68	8.2					17 10		19 20
21	45	27	36	0	20	30	29	0		ò		0.0	0.00	30.18	30.20	5.9	25	6.6	20		10	26	21
22	53	30	42	6	25	35	23	0		0		0.0	0.00	30.04	30.09	7.0		10.0			26	32	22
23	46	32 38	39	4	25 37	34	26 22	0	RA BR	0		0.0	0.00	30.37 30.21	30.43 30.24	7.7		8.4	23		13	23 24	23 24
25	50	38	43	6	31	37	24	0	IN DR	0		0.0	0.00	30.43	30.24	3.6					15		25
26	50	32	41	6	34	39	24	0	BR	0		0.0	0.00	30.53	30.51	3.0					18		26
27	64*	45	55*	20	43	50	10	0	RA	0		0.0	0.03	29.91	29.92	12.1		14.2			28		27
28	46	31	39	5	25	34	26	0		0		0.0	0.00	30.06	30.12	6.6					17 20		28
29 30	46	30	38	4	32 20	37	27 28	0	RA BR SN	0		0.0 T	0.19 T	29.78	29.78 29.81	4.1		9.8			20	26 29	
31	46	30	38	4	21	32	27	ő		ŏ		0.0	0.00	30.04	30.06	12.8		13.0			20		31
	45.6	32.1	38.8	-	25.5	34.2	25.9	0.0	< MONTHLY AVERAGES TOT	ALS >	1-	0.3	2.72	30.14	30.15	6.1	28	10.0	< M0	NTHLY	AVER	AGES	
_	0.8	2.0	1.3	a	<				DEPARTURE FROM NORMAL			>	-0.84	SUNSH	INE, CLO	UD, & V	ISIB	LITY	TABL	ES OI	N PAC	FE 3	
			EGRI	ILY			ON TO D		GREATEST 24-HR PRECIPITATION GREATEST 24-HR SNOWFALL : GREATEST SNOW DEPTH :	0.	DAT		07 15 15	MAXIM	IUM :	EVEL P	RESS 30. 29.	75		DATE 19 01	09	ME 54 54	
	TING	: 6	00000000000000000000000000000000000000	-50 0	URE	1435 1726		35 25	NUMBER OF _> MAXIMUM DAYS WITH THUNDERS	TEMP <	= 32 :	1 MI		TEMP <= TEMP <= G		PREC	IPIT.	ATION ATION L >= 1	>= 0.	10 INC		11 6 0	

PHILADELPHIA WATER | ANALYSIS METHODS

Programming

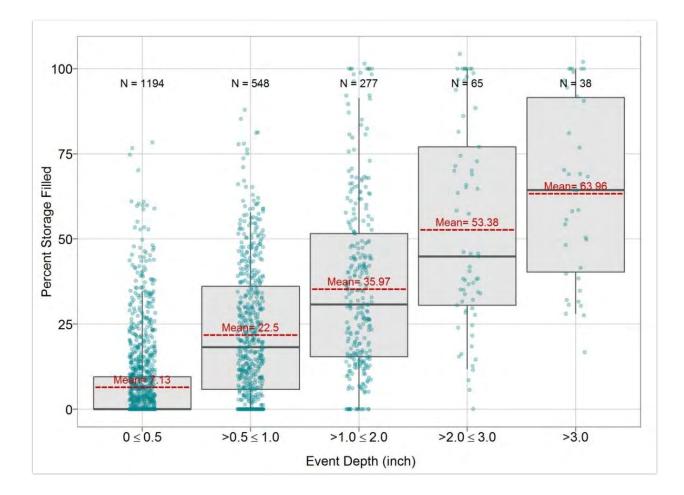
A web application framework for R Turn your analyses into interactive web applications. No HTML, CSS, or JavaScript knowledge required

R: Statistical software


Amazon Web Services (AWS): Cloud computing service

GitHub: Online project hosting with revision control and source code management

Take me to the <u>app!</u>


PHILADELPHIA WATER | GSIM APP

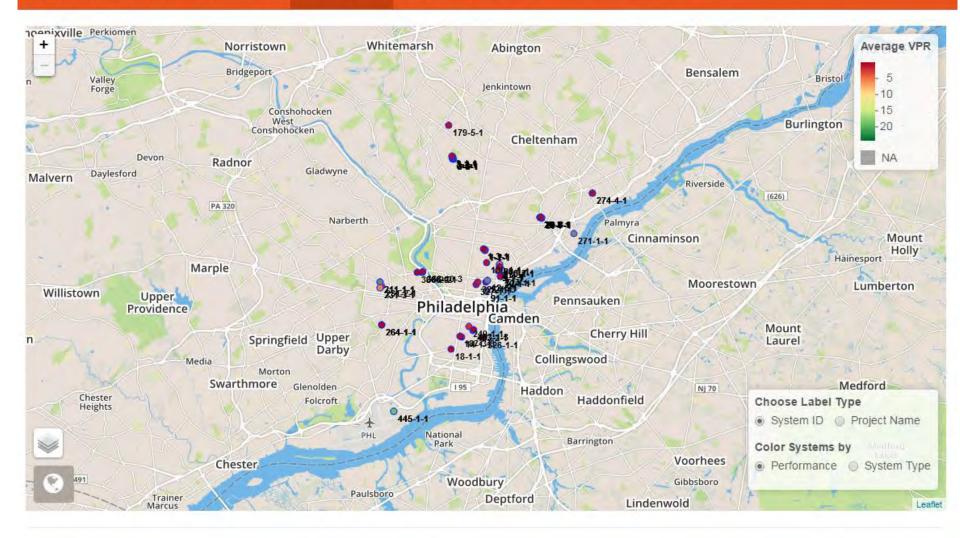
Performance: Overflows

PHILADELPHIA WATER DEPARTMENT | RESULTS

Performance: Storage Used

PHILADELPHIA WATER DEPARTMENT | RESULTS

Questions?


PHILADELPHIA WATER DEPARTMENT

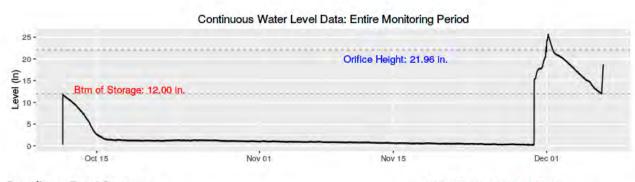
Extra Slides

PHILADELPHIA WATER DEPARTMENT

gSIM.db 1.8 : : ineffable impala News

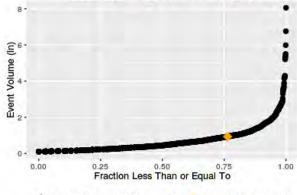
Short-Term Systems and Events

Select an SMP

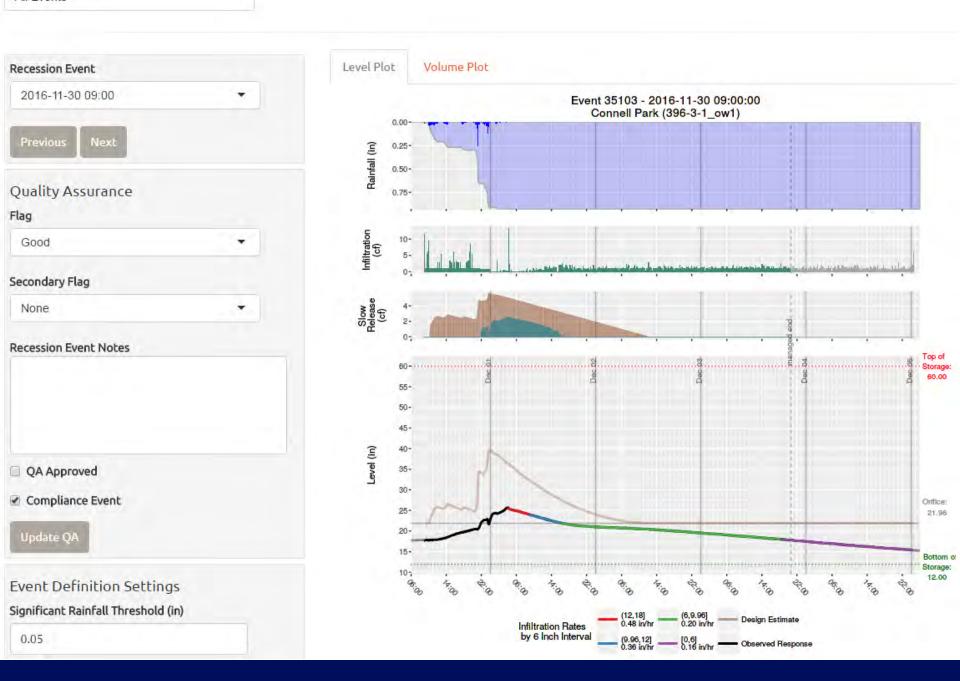


System Metrics

System Type	Tree Trench
System Function	Slow Release (unlined)


Design Parameters

DCIA (sf)	23,437
Loading Ratio	12.75
Greened Acres (ac-in)	0.89
Infiltration Footprint (sf)	1,838
Storage Footprint (sf)	1,838
Vegetated Footprint (sf)	0
Ponded Volume (cf)	0
Soil Volume (cf)	0
Total Volume (cf)	3,229
Maximum System Depth (ft)	4.00
Infiltration Rate (in/hr)	0.00
Credited Storage (in)	1.15
Slow Release Volume (cf)	2244.00
Volume Below Orifice (cf)	985.00
Maximum Head on Orifice (ft)	3.17
Orifice Diameter (in)	0.75
Deals Palaaca Data (cfc)	0.02


Compliance Event Summary Event ID 35103 Event Start 2016-11-30 09:00:00 Total Rainfall (in) 0.93 Rainfall Duration (hrs) 19 Peak Intensity (in/hr) 1.01

CDF: 26 Year Rainfall Data for Corresponding Event and Raingauge

🔶 Adjusted & Smoothed Infiltration Rate 🔶 Smoothed Infiltration Rate

PHILADELPHIA WATER DEPARTMENT gSIM.db

PHILADELPHIA WATER DEPARTMENT | gSIM.db