"Improving the Design and Operations of Intersections"

Stopping Crashes Or Preventing Crashes

Definition

- Two Objects trying to occupy the same space at the same time
- Can be Vehicle, Pole, Tree, Bicyclist, or Pedestrian.
- Generally BAD

Car Crash

Real Crash

Causes

- One or more mistakes cause a Crash
- Bad Driving or Walking
- Not Following the Rules of the Road
- Malfunction Vehicle or Traffic Control
- Bad Design
- Old Design
- Poor Roadway

Actions

- Add All RED Phase done in 70s & 80s
- Add Mast Arms with Overhead Signals
- Add Second Overhead Signal
- Install All Way Stop
- Install Signal
- Remove Signal
- Install Corner Clearances
- Add Ped Countdown Signals
- Add Left Turn Signals
- Improve Signage

Pedestrian Countdown Signal

Systematic Approach to Intersection Safety Feb 2, 2010

Fred Ranck, PE, PTOE

fred.ranck@fhwa.dot.gov

Safe Roads for a Safer Future Investment in roadway safety saves lives

Why Intersection Safety?

- □ A small part of overall highway system, but -
- □ In 2008 7,772 fatalities related to intersections
 - (21% of Total Highway Fatalities)
- Each year more than 3.17 million intersection crashes occur (over 55% of all reported crashes)

2008 US National Total Crash Characteristics

Crash Type	Total Cra	ashes	Fatal/Injury Crashes		
	Number	%	Number	%	
Non Intersection	2,638,000	45%	722,680	43%	
Stop/No control Intersection	984,000	17%	321,520	19%	
Signalized Intersection	55% 1,182,000	20%	57% 380,511	23%	
Unclassified	1,005,000	17%	240,306	14%	
Total	5,801,228	100%	1,637,476	100%	

Safety and Design National Technical

Source: US DOT: Traffic Safety Facts 2008 Early Edition & Compilation of motor vehicle crash data from FARS and GES, Table 29, Page 52

Feb 2, 2010

2008 Traffic Fatalities (FARS)

	US	Pennsylvania	New Jersey
Total Fatalities	37,261	1,468	590
Roadway	19,794	901	216
Departure	(53%)	(61%)	(37%)
	7,772	260	206
Intersections	(21%)	(18%)	(35%)
Feb 2, 2010	Safety and Des	sign National Technical	4

Systematic Approach to Intersection Safety

Rather than focusing on only a few intersections with the highest number of crashes – "Top Down" (typical HSIP program)

Systematic Approach focuses on the intersections with the majority of the crashes – "Bottom Up" Developing and Implementing Intersection Safety Plans

Implementing the "Systematic Approach to Intersection Safety"

South Carolina Louisiana Missouri Florida Indiana Mississippi **Georgia**

Systematic Approach to Intersection Safety by the States: Implementation Plans

□ Identify those intersections that make up 40 to 60% of state total crashes

Improve with low cost signing and marking and signal improvements: warning signs, double up, oversize, markings, Signal head per lane with backplates, etc.

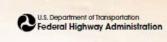
□ Break down the improvements into a series of annual elements over 5 years

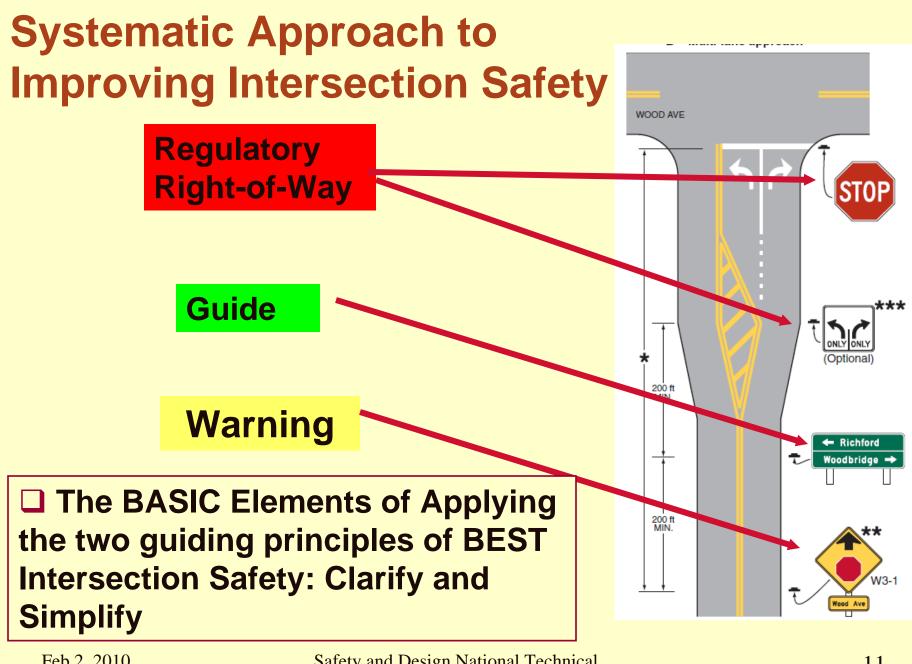
Systematic Approach to Intersection Safety

- Application of low cost counter measures:
- □ Signing and
- □ Marking and
- Minor Signal Visibility measures

- Rather than high cost geometric reconstruction of intersections

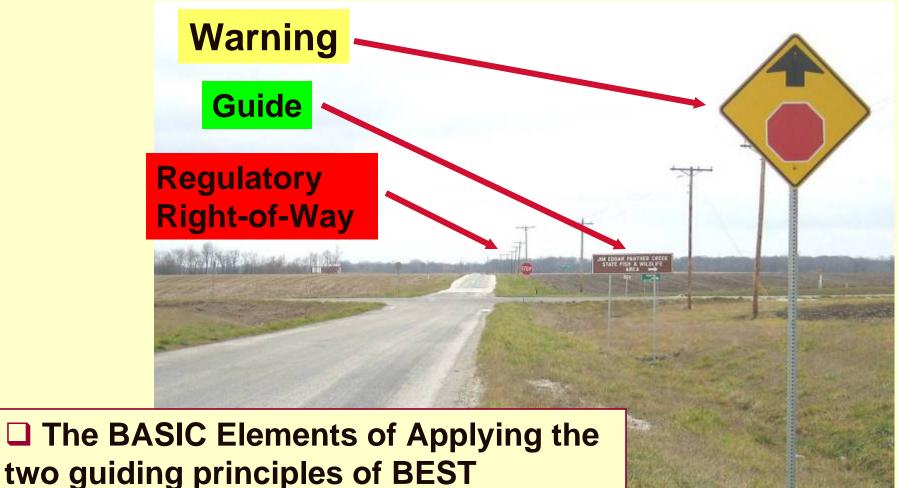
Low-Cost Safety Enhancements for Stop-Controlled and Signalized Intersections


Intersection Safety Countermeasures



Safe Roads for a Safer Future

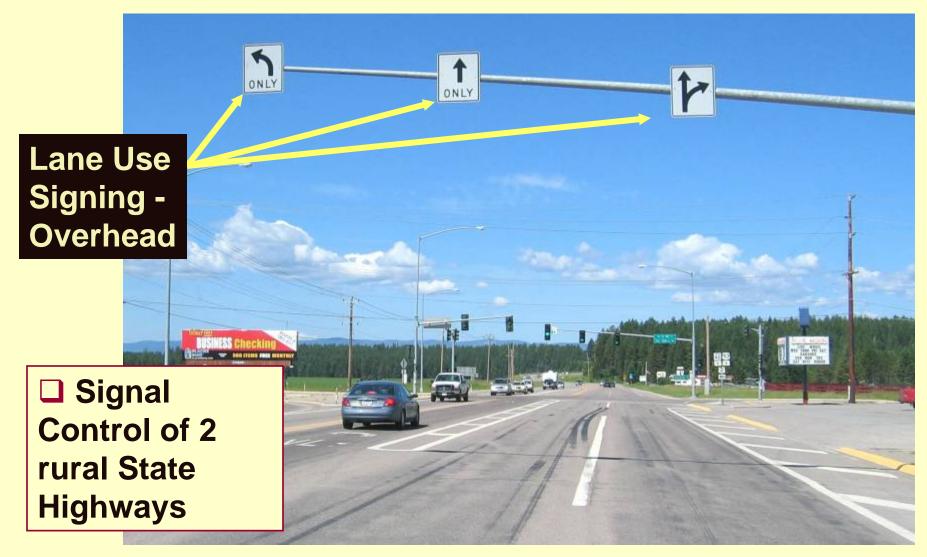
FHWA-SA-09-020

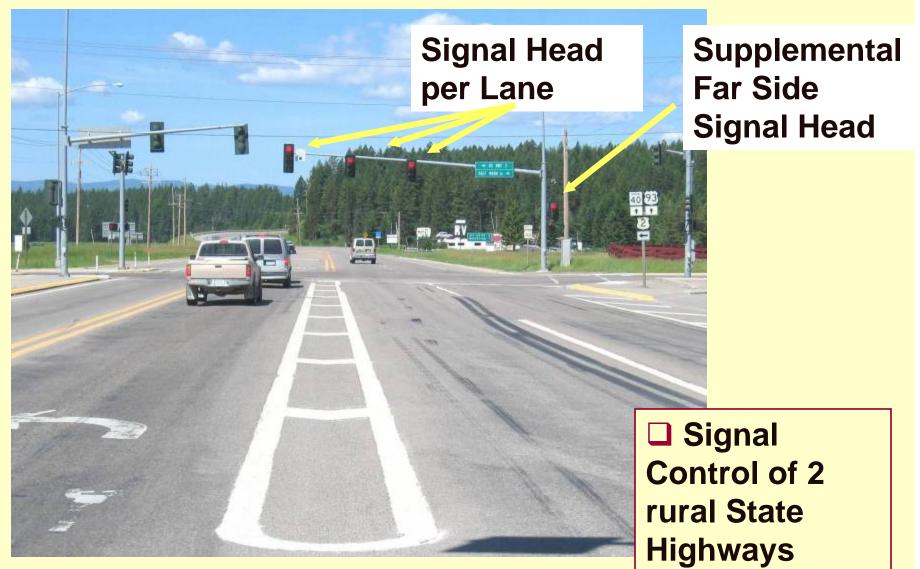

UNSIGNALIZED INTERSECTION SAFETY STRATEGIES

Feb 2, 2010

Systematic Approach to Improving Intersection Safety

Intersection Safety: Clarify and Simplify


Feb 2, 2010



Feb 2, 2010

Pennsylvania					-	
Intersection Crashes	Intersection Crashes			ashes	Fatalities	
2004-2008	Total		Percentage		Total	Percentage
State Rural		29,543		11.61%	508	29.57%
Signalized		4,018		1.58%	44	2.56%
Stop-Controlled		13,919		5.47%	309	17.99%
Unknown/Other		11,606		4.56%	155	9.02%
State Urban		147 100		57.83%	938	54.60%
Signalized		72,793)	28.62%	419	24.39%
Stop-Controlled Signaliz	ep	35,104		13.80%	285	16.59%
Unknown/Other 38%		39,203		15.41%	234	13.62%
Local Rural	Т	7,579		2.98%	32	1.86%
Signalized		551		0.22%	2	0.12%
Stop-Controlled National	I V	3,925		1.54%	8	0.47%
Unknown/Other	רי	3,103		1.22%	22	1.28%
Local Urban 20%		70,162		27.58%	240	13.97%
Signalized		19,986		7.86%	72	4.19%
Stop-Controlled		31,181	1	12.26%	94	5.47%
Unknown/Other		18,995		7.47%	74	4.31%
Grand Total		254,384		100.00%	1,718	100.00%

CRF = 28% total crashes CRF = 35% right angle crashes

*NCHRP 500, Strategy 17.2 D2: Improve Visibility of Signals

2 head for 2 Lt lanes 2 heads for 2 lanes

CRF = 28% total crashes CRF = 35% right angle crashes

Feb 2, 2010

 D2: Improve Visibility of Signals

 Safety and Design National Technical
 2

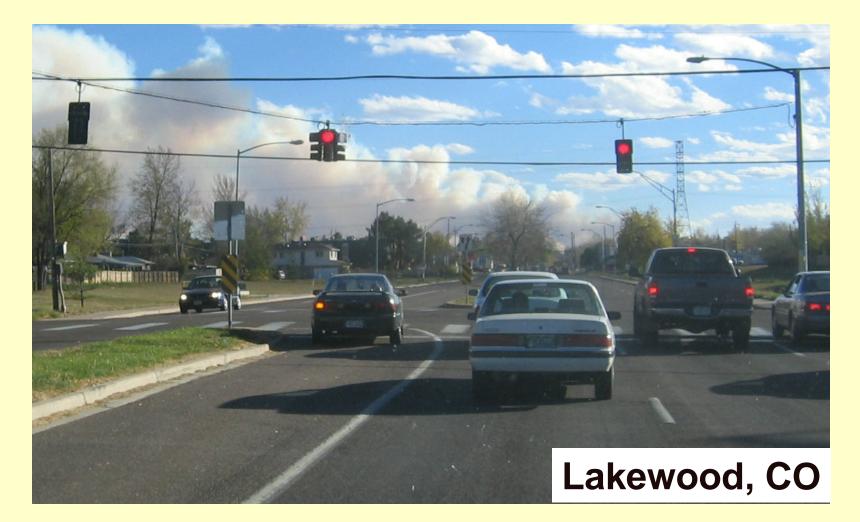
*NCHRP 500, Strategy 17.2

Services Team

1 head for

1 Rt lane

- Place Primary Signal Heads over each Through lane Jackson, MS 4 approach lanes 4 signal heads


Feb 2, 2010

Place Primary Signal Heads over each Through lane

Columbia, SC

Safety and Design National Technical Services Team **CRF = 28%**

total crashes

Add Supplemental Signal Head(s)

Supplemental Signal on span wire

Feb 2, 2010

Add Back Plates

Systematic Approach to Intersection Safety -4. Signal Clearance Intervals:

1. Update Yellow Clearance Interval

NY study: 9% decrease in multivehicle crashes

*NCHRP 500, Objective 17.2 A2 – Optimize Clearance Intervals Yellow Time All-Red Time Table 13–2 Formula to Calculate Change + Clearance Interval Time Matric Values English Values in [1] $CP = t + \frac{V}{2a} + \frac{V}{20} \frac{V}{[64,4]g} + \frac{W+L}{V}$

where:

- CP = non-dilemma change period (Change + Clearance Intervals)
 - t = perception-reaction time (nominally 1 sec)
 - V = approach speed, m/s [ft/s]
 - g = percent grade (positive for upgrade, negative for downgrade)
 - a = deceleration rate, m/s² (typical 3.1 m/s²) [ft/s² (typical 10 ft/s²)]
- W = width of intersection, curb to curb, m [ft]
- L = length of vehicle, (typical 6 m) [ft (typical 20 ft)]

Source: Determining Vehicle Signal Change and Clearance Intervals, Publication IR-073, Washington, D.C.: Institute of Transportation Engineers, 1994. NY study: CRF =8% total crashes CRF = 12% injury crashes CRF = 39% ped crashes

Systematic Approach to Intersection Safety -5. Signal Coordination:

CRF = 12% to 38% of total crashes – 3 studies

CRF = 32% right angle crashes

*NCHRP 500, Objective 17.2 A4 – Employ Signal Coordination

Systematic Approach to Intersection Safety —Signal Example:

Ohio – 90th Worst Intersection for State – 184 crashes in 3 years

Systematic Approach to Intersection Safety Signal Example:

Identify Underlying Crash Cause: AIRS Crash Data identified 85% of Crashes were Red Light Running

Apply two guiding principles for design and operation of an intersection: Clarify Simplify

Systematic Approach to Intersection Safety Signal Example:

Systematic Approach to Intersection Safety Signal Example: After – 3rd St. South of SR16 Entrance

4 month Period Before - 15 Crashes 12 month Period After - 7 Crashes

Safety and Design National Technical Services Team

Systematic Approach to Intersection Safety by the States: Implementation Plans

12 States have developed Implementation Plans for Systematic Approach to Intersection Safety todate

□ 7 States are actively reviewing the identified intersections and conducting engineering field reviews.

□ 7 States have revised their engineering standards to provide for enhanced low cost signing and marking and for signal head per lane with back plates

□ 3 states have let contracts for the first year annual element for systematic improvement

Systematic Approach to Intersection Safety – **Results:**

South Carolina:

A Before (3 years of crash data) and After Study (3 years of crash data) was performed on the first 91 locations improved in 2003.

- □ Crash Rate Reduction of 54.7%
- □ Severity Index Reduction of 54.5%
- □ A Injury percentage reduction of 34.8%
- □ A Fatality percentage reduction of 75%
- □ Average Benefit/Cost ratio was 385.

Questions and Discussion:

Safety and Design National Technical Services Team MDOT Comprehensive Strategic Highway Safety Plan: Highway Safety Emphasis Area 2 -Improving Design and Operation of Intersections

> DVRPC Regional Safety Task Force February 2, 2010 KEVIN M. CONOVER, P.E., P.T.O.E. <u>kevin.conover@dot.state.nj.us</u>

609-530-3482

Intersection Crashes: More Frequent Than You Think...

- Nearly half of all intersection crashes occur "strictly" at intersections, but potentially three quarters of them are intersection related and they are 20% more likely to result in injury as compared to mid-block crashes.
- In 2005, State and County roadways experienced 49% of their crashes at intersections, also referred to as "in the box".
- Municipal roadways experienced 42% of their crashes at intersections.
- Signalized intersection crashes accounted for 10% of the crashes on Municipal roadways, 16% on the State system, and 18% on County roadways.

Goal:

Annually reduce intersection crash frequencies and severities across all roadway systems in New Jersey

- Intersection Crash Reduction Programs Currently Employed:
- 1) Intersection Improvement Program
- 2) Pedestrian
- 3) Left Turn
- 4) Right Angle (Incl. Red-Light Running)
- 5) Safe Corridors

Challenges:

- 1) MUTCD Guidelines for intersection design and operation are "minimal"
- 2) Wide range of signal designs and control methods employed throughout the State
- 3) Many locations with MUTCD warrantsatisfying crash experience frequently go unidentified until they are brought to the attention of the respective jurisdiction's engineers by local police
- 4) NJ Access Code only applies to State roads
- 5) The significant volumes of traffic passing through intersection facilities require complex operations and control
- 6) Police resources are stretched thin enforcing other improper motor vehicle operator behaviors (e.g. speeding, drunk/aggressive/distracted driving, etc.)

Proposed Strategies:

- Develop and/or enhance methodologies for identifying and selecting intersections for safety improvements
- A. Evaluate existing methodologies
- *B.* Develop handbook for intersection crash location identification, project development and implementation, and evaluation process
- *C.* Improve website version of crash records database for engineering and planning professionals
- 2) Develop and implement an NJ Best Practices Guidebook for design and operation of signalized and non-signalized intersections
- A. Organize a forum to establish guidelines
- *B.* Implement and promote guidelines

Proposed Strategies (cont'd):

- 3) Educate the public on intersection safety issues
- A. Promote utilization of existing resources to educate professionals
- **B.** Expand intersection safety in NJ Driver's Manual and Driver Education programs
- C. Educate decision-makers and the public about the benefits of investment in intersection safety
- D. Develop a safety marketing plan
- 4) Enhance compliance and provide increased enforcement at intersections
- A. Identify, evaluate and implement current technologies for enforcement
- **B.** Educate law enforcement on the importance of the enforcement of traffic controls at intersections

Intersection Safety Program Methodologies

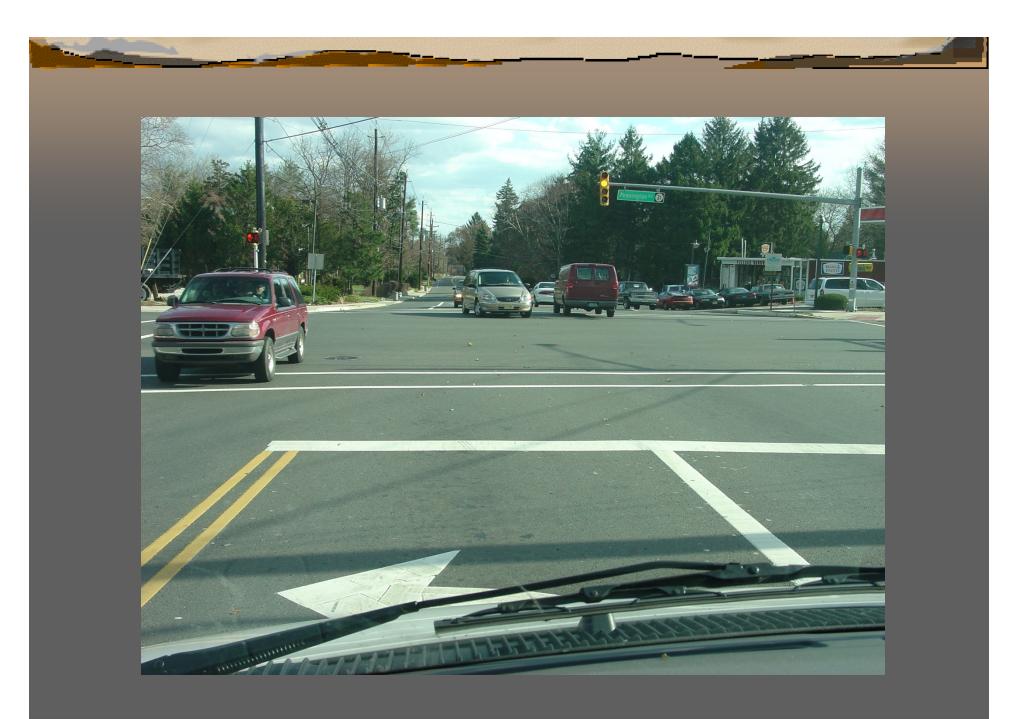
- High Priority (3-yr.Avg.>1 EPDO crash per month) and Top Priority (3-yr.Avg.>2 EPDO crashes per month) intersections in New Jersey
- Intersections averaging one moderate injury pedestrian crash per year
- Intersections experiencing four or more left turn crashes combined on opposing approaches
- Intersections experiencing five or more right angle crashes per year
- The three or four highest crash frequency and severity intersections or locations on NJ's State highway arterial corridors (representing 5% of the State system roadways)

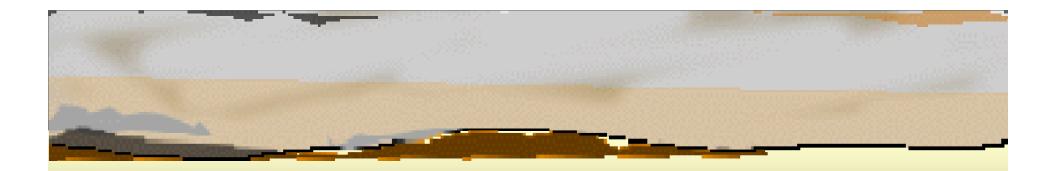
Intersection Safety Project Prioritization

- Initial Safety Management Systems Ranking
- Obvious crash patterns
- Statistically significant crash types and frequencies
- Countermeasurability
- Ease of implementation ("Low-hanging fruit")
- Minimal trade-offs
- Cost effectiveness / Return on investment

Project Justification/Evaluation

- Present Worth of Safety Elements of Capital Projects
- Benefit-to-Cost ratio of Low-Cost Projects exceed of 1.2
- Statistically significant reduction in crash frequencies and severities


New Jersey Best Practices Guidelines


Driver considerations

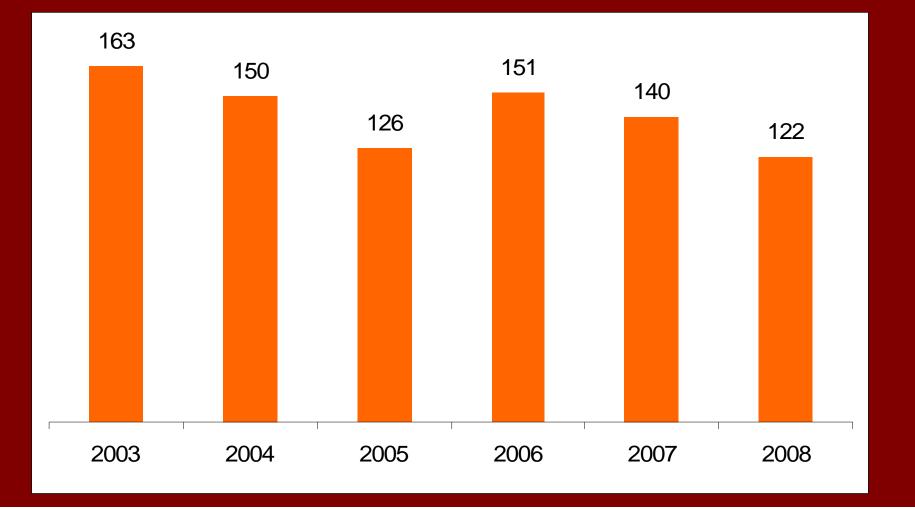
- 1. CONTROL OF CHANNELIZED RIGHT TURN LANES AT SIGNALS (SDRE, PED)
- 2. LEFT TURN SIGNALS (SDRE, LT, CAP)
- 3. LEFT/RIGHT TURN OVERLAPPING SIGNAL OPERATION (SDRE, PED, CAP)
- 4. STOPLINE SETBACK FOR LEFTMOST LANE OF MULTIPLE LANE APPROACHES (ENC, PED, CAP)
- 5. LANE GUIDANCE TRACKING FOR ADJACENT PAIRS OF LEFT AND THROUGH MOVEMENTS (SDSS, CAP)
- 6. PHYSICAL AND OPERATIONAL CONTROL OF LEFT TURN MOVEMENTS (LT, SDRE, SDSS, PED)
- 7. CHOICE OF CYCLE LENGTH AND MANNER OF PHASING OF SIGNALS (SDRE, SDSS, CAP)
- 8. APPROPRIATE SETTING OF YELLOW AND ALL-RED TIMES (RA, SDRE)

Pedestrian considerations

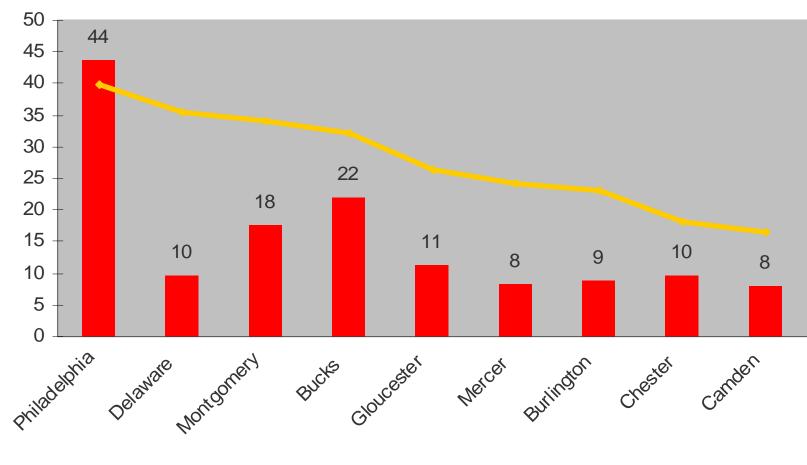
- 1. LOCATION AND NUMBER OF PEDESTRIAN CROSSINGS PROVIDED/MARKED/SIGNALIZED
- 2. PEDESTRIAN SIGNAL TYPES
- 3. PPB SIGNS ACCOMPANYING PEDESTRIAN SYMBOL INDICATIONS
- 4. DURATION OF WALK AND FLASHING DON'T WALK INTERVALS
- 5. VEHICULAR (3-SECTION) HEADS CONTROLLING PEDESTRIANS
- 6. MOVEMENT OF PEDESTRIANS ADJACENT TO SPLIT PHASE-CONTROLLED SIDESTREETS (LEFT TURN ARROW USAGE ASSUMED)
- 7. PROVISION OF HIGH VISIBILITY CROSSWALKS
- 8. 2009 MUTCD

Engineering, Education, Enforcement, with Everyone personally accountable today... ...will keep the sights and sounds... of the Emergency responders away!

Improving Intersection Safety in the Delaware Valley


Regional Safety Task Force February 2, 2010

General Notes


- Updated Safety Action Plan for the Delaware Valley completed in 2009
 - Data memo
 - Safety Action Plan
 - Summary cards
- RSTF focusing on one emphasis area per meeting for implementation

Why Link Safety & Intersections?

Crash Fatalities for Which Intersections Were a Factor in the Delaware Valley

Importance of Improving Intersection Safety

Average Number of Fatalities in which Intersections were a Factor, 2005-2007
 Percent of All Road Fatalities in that County in which Intersections were a Factor

Priority Strategies

- 1. Enhance standardization for problem identification, prioritization, and funding
- 2. Implement engineering solutions
- 3. Continue to develop and implement specific intersection safety programs

Source: Safety Action Plan, p. 49

Resources

- All of you in the room
- Safety Action Plan and data memory
- DOT SHSPs
- NCHRP Reports available at safety.transportation.org/guides.aspx
 - 500-5: A Guide for Addressing Unsignalized Intersection Collisions
 - 500-12: A Guide for Reducing Collisions at Signalized Intersections

Starting Thoughts from...

- Fred Ranck, Safety Engineer, Resource Center Safety and Design Technical Services Team/MUTCD Team, FHWA
- Christopher Speece, Section Manager, Highway Safety Engineering, PennDOT
 – Bureau of Highway Safety & Traffic Engineering
- Charles Denny, Assistant Chief Traffic Engineer, Philadelphia Streets Department
- Kevin Conover, Section Chief, NJDOT Bureau of Safety Programs: Crash Analysis & Safety Programs